
Bioinformatics Toolbox 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Bioinformatics Toolbox User’s Guide

© COPYRIGHT 2003–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2003 Online only New for Version 1.0 (Release 13SP1+)
June 2004 Online only Revised for Version 1.1 (Release 14)
November 2004 Online only Revised for Version 2.0 (Release 14SP1+)
March 2005 Online only Revised for Version 2.0.1 (Release 14SP2)
May 2005 Online only Revised for Version 2.1 (Release 14SP2+)
September 2005 Online only Revised for Version 2.1.1 (Release 14SP3)
November 2005 Online only Revised for Version 2.2 (Release 14SP3+)
March 2006 Online only Revised for Version 2.2.1 (Release 2006a)
May 2006 Online only Revised for Version 2.3 (Release 2006a+)
September 2006 Online only Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
April 2007 Online only Revised for Version 2.6 (Release 2007a+)

Contents

Getting Started

1
What Is Bioinformatics Toolbox? . 1-2

Expected User . 1-3

Installation . 1-5
Required Software . 1-5
Additional Software . 1-5

Features and Functions . 1-7
Data Formats and Databases . 1-8
Sequence Alignments . 1-9
Sequence Utilities and Statistics . 1-10
Protein Property Analysis . 1-11
Phylogenetic Analysis . 1-12
Microarray Data Analysis . 1-12
Mass Spectrometry Data Analysis . 1-13
Graph Theory Functions . 1-16
Graph Visualization . 1-17
Statistical Learning and Visualization 1-17
Prototyping and Development Environment 1-18
Data Visualization . 1-18
Algorithm Sharing and Application Deployment 1-19

Sequence Analysis

2
Example: Sequence Statistics . 2-2

Determining Nucleotide Content . 2-2
Getting Sequence Information into MATLAB 2-4
Determining Nucleotide Composition 2-5
Determining Codon Composition . 2-9
Open Reading Frames . 2-12

v

Amino Acid Conversion and Composition 2-15

Example: Sequence Alignment . 2-18
Finding a Model Organism to Study 2-18
Getting Sequence Information from a Public Database . . . 2-20
Searching a Public Database for Related Genes 2-23
Locating Protein Coding Sequences 2-25
Comparing Amino Acid Sequences . 2-28

Sequence Tool . 2-37
Importing a Sequence . 2-37
Viewing Nucleotide Sequence Information 2-39
Searching for Words . 2-41
Exploring Open Reading Frames . 2-42
Viewing Amino Acid Sequence Statistics 2-45

Multiple Sequence Alignment Viewer 2-48
Loading Sequence Data and Viewing the Phylogenetic

Tree . 2-48
Selecting a Subset of Data from the Phylogenetic Tree . . . 2-49
Aligning Multiple Sequences . 2-50
Adjusting Multiple Alignments Manually 2-51

Microarray Analysis

3
Example: Visualizing Microarray Data 3-2

Overview of the Mouse Example . 3-2
Exploring the Microarray Data Set 3-3
Spatial Images of Microarray Data 3-5
Statistics of the Microarrays . 3-15
Scatter Plots of Microarray Data . 3-16

Example: Analyzing Gene Expression Profiles 3-25
Overview of the Yeast Example . 3-25
Exploring the Data Set . 3-25
Filtering Genes . 3-29
Clustering Genes . 3-32
Principal Component Analysis . 3-36

vi Contents

Phylogenetic Analysis

4
Example: Building a Phylogenetic Tree 4-2

Overview for the Primate Example 4-2
Searching NCBI for Phylogenetic Data 4-4
Creating a Phylogenetic Tree for Five Species 4-6
Creating a Phylogenetic Tree for Twelve Species 4-8
Exploring the Phylogenetic Tree . 4-10

Phylogenetic Tree Tool Reference 4-14
Opening the Phylogenetic Tree Tool 4-14
File Menu . 4-16
Tools Menu . 4-25
Windows Menu . 4-34
Help Menu . 4-34

Examples

A
Sequence Analysis . A-2

Microarray Analysis . A-2

Phylogenetic Analysis . A-2

Index

vii

viii Contents

1

Getting Started

This chapter is an overview of the functions and features in Bioinformatics
Toolbox. An introduction to these features will help you to develop a
conceptual model for working with the toolbox and your biological data.

What Is Bioinformatics
Toolbox? (p. 1-2)

Description of this toolbox and the intended
user

Installation (p. 1-5) Required software and additional software
for developing advanced algorithms

Features and Functions
(p. 1-7)

Functions grouped into categories that
support bioinformatic tasks

1 Getting Started

What Is Bioinformatics Toolbox?
Bioinformatics Toolbox extends MATLAB® to provide an integrated software
environment for genome and proteome analysis. Scientists and engineers
can answer questions, solve problems, prototype new algorithms, and build
applications for drug discovery and design, genetic engineering, and biological
research.

You can use the basic bioinformatic functions provided with this toolbox
to create more complex algorithms and applications. These robust and
well-tested functions are the functions that you would otherwise have to
create yourself.

• Data formats and databases — Connect to Web-accessible databases
with genomic and proteomic data. Read and convert between multiple
data formats.

• Sequence analysis — Determine the statistical characteristics of a
sequence, align two sequences, and multiply align several sequences.
Model patterns in biological sequences using Hidden Markov Model (HMM)
profiles.

• Phylogenetic analysis — Create and manipulate phylogenetic tree data.

• Microarray data analysis — Read, normalize, and visualize microarray
data.

• Mass spectrometry data analysis — Analyze and enhance raw mass
spectrometry data.

• Statistical learning — Classify and identify features in data sets with
statistical learning tools.

• Programming interface — Use other bioinformatic software (Bioperl
and BioJava) within the MATLAB environment.

The field of bioinformatics is rapidly growing and will become increasingly
important as biology becomes a more analytical science. Bioinformatics
Toolbox provides an open environment that you can customize for development
and deployment of the analytical tools you will need.

Prototype and develop algorithms — Prototype new ideas in an open and
extendable environment. Develop algorithms using efficient string processing

1-2

What Is Bioinformatics Toolbox?

and statistical functions, view the source code for existing functions, and
use the code as a template for customizing, improving, or creating your own
functions. See “Prototyping and Development Environment” on page 1-18.

Visualize data — Visualize sequences and alignments, gene expression
data, phylogenetic trees, mass spectrometry data, protein structure,
and relationships between data with interconnected graphs. See “Data
Visualization” on page 1-18.

Share and deploy applications — Use an interactive GUI builder to
develop a custom graphical front end for your data analysis programs. Create
stand-alone applications that run separately from MATLAB. See “Algorithm
Sharing and Application Deployment” on page 1-19.

1-3

1 Getting Started

Expected User
Bioinformatics Toolbox is for computational biologists and research scientists
who need to develop new algorithms or implement published ones, visualize
results, and create stand-alone applications.

• Industry/Professional — Increasingly, drug discovery methods are being
supported by engineering practice. This toolbox supports tool builders
who want to create applications for the biotechnology and pharmaceutical
industries.

• Education/Professor/Student — This toolbox is well suited for learning
and teaching genome and proteome analysis techniques. Educators
and students can concentrate on bioinformatic algorithms instead of
programming basic functions such as reading and writing to files.

While the toolbox includes many bioinformatic functions, it is not intended
to be a complete set of tools for scientists to analyze their biological data.
However, MATLAB is the ideal environment for you to rapidly design and
prototype the tools you need.

1-4

Installation

Installation
You don’t need to do anything special when installing Bioinformatics Toolbox.
Install the toolbox from a DVD or Web release using The MathWorks installer.

• “Required Software” on page 1-5 — List of MathWorks products you need to
purchase with Bioinformatics Toolbox

• “Additional Software” on page 1-5 — List of toolboxes from The MathWorks
for advanced algorithm development

Required Software
Bioinformatics Toolbox requires the following products from The MathWorks
to be installed on your computer:

MATLAB Provides a command-line interface and integrated
software environment for Bioinformatics Toolbox.

Version 2.5 of Bioinformatics Toolbox requires
MATLAB Version 7.4 on the Release 2007a DVD.

Statistics Toolbox Provides basic statistics and probability functions
that the functions in Bioinformatics Toolbox use.

Version 2.5 of Bioinformatics Toolbox requires
Statistics Toolbox Version 6.0 on the Release 2007a
DVD.

Additional Software
MATLAB and Bioinformatics Toolbox provide an open and extensible software
environment. In this environment you can interactively explore ideas,
prototype new algorithms, and develop complete solutions to problems in
bioinformatics. The MATLAB language facilitates computation, visualization,
prototyping, and deployment.

Using Bioinformatics Toolbox in combination with other MATLAB toolboxes
and products will allow you to solve multidisciplinary problems.

1-5

1 Getting Started

Distributed
Computing Toolbox

Execute bioinformatic algorithms onto a cluster
of computers. For an example of batch processing
through distributed computing, see the Batch
Processing of Spectra Using Distributed Computing
demo.

Signal Processing
Toolbox

Process signal data from bioanalytical
instrumentation. Examples include acquisition
of fluorescence data for DNA sequence analyzers,
fluorescence data for microarray scanners, and
mass spectrometric data from protein analyses.

Image Processing
Toolbox

Create complex and custom image processing
algorithms for data from microarray scanners.

Optimization
Toolbox

Use nonlinear optimization for predicting the
secondary structure of proteins and the structure of
other biological macromolecules.

Neural Network
Toolbox

Use neural networks to solve problems where
algorithms are not available. For example, you can
train neural networks for pattern recognition using
large sets of sequence data.

Database Toolbox Create your own in-house databases for sequence
data with custom annotations.

MATLAB Compiler Create standalone applications from MATLAB GUI
applications, and create dynamic link libraries from
MATLAB functions for use with any programming
environment.

MATLAB Builder
for COM

Create COM objects to use with any COM-based
programming environment.

MATLAB Builder
for Excel

Create Excel add-in functions from MATLAB
functions to use with Excel spreadsheets.

Excel Link Connect Microsoft Excel with the MATLAB
workspace to exchange data and to use the
computational and visualization functions in
MATLAB.

1-6

Features and Functions

Features and Functions
Bioinformatics Toolbox includes many functions to help you with genome and
proteome analysis. Most functions are implemented in M-code (the MATLAB
programming language) with the source available for you to view. This open
environment lets you explore and customize the existing toolbox algorithms
or develop your own.

Data Formats and Databases (p. 1-8) Access online databases, copy data
into the MATLAB workspace, and
read and write to files with standard
bioinformatic formats.

Sequence Alignments (p. 1-9) Compare nucleotide or amino
acid sequences using pair-wise
and multiple sequence alignment
functions.

Sequence Utilities and Statistics
(p. 1-10)

Manipulate sequences and
determine physical, chemical,
and biological characteristics.

Protein Property Analysis (p. 1-11) Determine protein characteristics
and simulate enzyme cleavage
reactions.

Phylogenetic Analysis (p. 1-12) Explore phylogenetic data with
functions and a GUI to draw
phylograms (trees)

Microarray Data Analysis (p. 1-12) Read, filter, normalize, and visualize
microarray data.

Mass Spectrometry Data Analysis
(p. 1-13)

Preprocess raw mass spectrometry
data and use statistical learning
functions to identify patterns.

Graph Theory Functions (p. 1-16) Apply basic graph theory algorithms
to sparse matrices.

Graph Visualization (p. 1-17) View relationships between data
visually with interactive maps,
hierarchy plots, and pathways.

1-7

1 Getting Started

Statistical Learning and
Visualization (p. 1-17)

Classify and identify features in
data sets, set up cross-validation
experiments, and compare different
classification methods.

Prototyping and Development
Environment (p. 1-18)

Create new algorithms, try new
ideas, and analyze alternatives.

Data Visualization (p. 1-18) Visually compare pair-wise sequence
alignments, multiply aligned
sequences, gene expression data
from microarrays, and plot nucleic
acid and protein characteristics.

Algorithm Sharing and Application
Deployment (p. 1-19)

Create GUIs and stand-alone
applications.

Data Formats and Databases
Bioinformatics Toolbox supports access to many of the databases on the
Web and other online data sources. It also reads many common genome file
formats, so that you do not have to write and maintain your own file readers.

Web-based databases — You can directly access public databases on the
Web and copy sequence and gene expression information into MATLAB.

The sequence databases currently supported are GenBank (getgenbank),
GenPept (getgenpept), European Molecular Biology Laboratory EMBL
(getembl), and Protein Data Bank PDB (getpdb). You can also access data
from the NCBI Gene Expression Omnibus (GEO) web site by using a single
function (getgeodata).

Get multiply aligned sequences (gethmmalignment), hidden Markov model
profiles (gethmmprof), and phylogenetic tree data (gethmmtree) from the
PFAM database.

Gene Ontology database — Load the database from the Web into a gene
ontology object (geneont). Select sections of the ontology with methods for the
geneont object (getancestors, getdescendants, getmatrix, getrelatives),
and manipulate data with utility functions (goannotread, num2goid).

1-8

Features and Functions

Read data from instruments — Read data generated from gene
sequencing instruments (scfread, joinseq, traceplot), mass spectrometers
(jcampread), and Agilent microarray scanners (agferead).

Reading data formats — The toolbox provides a number of functions for
reading data from common bioinformatic file formats.

• Sequence data: GenBank (genbankread), GenPept (genpeptread), EMBL
(emblread), PDB (pdbread), and FASTA (fastaread)

• Multiply aligned sequences: ClustalW and GCG formats (multialignread)

• Gene expression data from microarrays: Gene Expression Omnibus (GEO)
data (geosoftread), GenePix data in GPR and GAL files (gprread,
galread), SPOT data (sptread), Affymetrix® GeneChip® data (affyread),
and ImaGene results files (imageneread).

Note: The function affyread only works on PC supported platforms.

• Hidden Markov model profiles: PFAM-HMM file (pfamhmmread)

Writing data formats — The functions for getting data from the Web
include the option to save the data to a file. However, there is a function to
write data to a file using the FASTA format (fastawrite).

BLAST searches — Request Web-based BLAST searches (blastncbi), get
the results from a search (getblast) and read results from a previously saved
BLAST formatted report file (blastread).

MATLAB has built-in support for other industry-standard file formats
including Microsoft Excel and comma-separated value (CSV) files. Additional
functions perform ASCII and low-level binary I/O, allowing you to develop
custom functions for working with any data format.

Sequence Alignments
You can select from a list of analysis methods to perform pair-wise or multiple
sequence alignment.

Pair-wise sequence alignment — Efficient MATLAB implementations
of standard algorithms such as the Needleman-Wunsch (nwalign) and
Smith-Waterman (swalign) algorithms for pair-wise sequence alignment.

1-9

1 Getting Started

The toolbox also includes standard scoring matrices such as the PAM and
BLOSUM families of matrices (blosum, dayhoff, gonnet, nuc44, pam).
Visualize sequence similarities with seqdotplot and sequence alignment
results with showalignment.

Multiple sequence alignment — Functions for multiple sequence
alignment (multialign, profalign) and functions that support multiple
sequences (multialignread, fastaread, showalignment). There is also a
graphical interface (multialignviewer) for viewing the results of a multiple
sequence alignment and manually making adjustment.

Multiple sequence profiles — MATLAB implementations for
multiple alignment and profile hidden Markov model algorithms
(gethmmprof, gethmmalignment, gethmmtree, pfamhmmread, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofmerge, hmmprofstruct,
showhmmprof).

Biological codes — Look up the letters or numeric equivalents for
commonly used biological codes (aminolookup, baselookup, geneticcode,
revgeneticcode).

Sequence Utilities and Statistics
You can manipulate and analyze your sequence to gain a deeper understanding
of your data. Use a graphical user interface (GUI) with many of the sequence
functions in Bioinformatics Toolbox (seqtool).

Sequence conversion and manipulation — The toolbox provides routines
for common operations, such as converting DNA or RNA sequences to amino
acid sequences, that are basic to working with nucleic acid and protein
sequences (aa2int, aa2nt, dna2rna, rna2dna, int2aa, int2nt, nt2aa, nt2int,
seqcomplement, seqrcomplement, seqreverse).

You can manipulate your sequence by performing an in-silico digestion with
restriction endonucleases (restrict) and proteases (cleave).

Sequence statistics — Determine various statistics about a sequence
(aacount, basecount, codoncount, dimercount, nmercount, ntdensity,
codonbias, cpgisland, oligoprop), search for specific patterns within a
sequence (seqshowwords, seqwordcount), or search for open reading frames

1-10

Features and Functions

(seqshoworfs). In addition, you can create random sequences for test cases
(randseq).

Sequence utilities — Determine a consensus sequence from a set of multiply
aligned amino acid, nucleotide sequences (seqconsensus, or a sequence
profile (seqprofile). Format a sequence for display (seqdisp) or graphically
show a sequence alignment with frequency data (seqlogo).

Additional functions in MATLAB efficiently handle string operations with
regular expressions (regexp, seq2regexp) to look for specific patterns in a
sequence and search through a library for string matches (seqmatch).

Look for possible cleavage sites in a DNA/RNA sequence by searching for
palindromes (palindromes).

Protein Property Analysis
You can use a collection of protein analysis methods to extract information
from your data. The toolbox provides functions to calculate various properties
of a protein sequence, such as the atomic composition (atomiccomp), molecular
weight (molweight), and isoelectric point (isoelectric). You can cleave
a protein with an enzyme (cleave, rebasecuts) and create distance and
Ramachandran plots for PDB data (pdbdistplot, ramachandran). The
toolbox contains a graphical user interface for protein analysis (proteinplot)
and plotting 3-D protein and other molecular structures with information
from molecule model files, such as PDB files (molviewer).

Amino acid sequence utilities — Calculate amino acid statistics for a
sequence (aacount) and get information about character codes (aminolookup).

1-11

1 Getting Started

Phylogenetic Analysis
Functions for phylogenetic tree building and analysis.

Phylogenetic tree data — Read and write Newick-formatted tree files
(phytreeread, phytreewrite) into the MATLAB workspace as phylogenetic
tree objects (phytree).

Create a phylogenetic tree — Calculate the pair-wise distance between
biological sequences (seqpdist), estimate the substitution rates (dnds,
dndsml), build a phylogenetic tree from pair-wise distances (seqlinkage,
seqneighjoin, reroot), and view the tree in an interactive GUI that allows
you to view, edit, and explore the data (phytreetool or view). This GUI also
allows you to prune branches, reorder, rename, and explore distances.

Phylogenetic tree object methods — You can access the functionality
of the phytreetool GUI using methods for a phylogenetic tree object
(phytree). Get property values (get) and node names (getbyname). Calculate
the patristic distances between pairs of leaf nodes (pdist, weights)
and draw a phylogenetic tree object in a MATLAB figure window as a
phylogram, cladogram, or radial treeplot (plot). Manipulate tree data by
selecting branches and leaves using a specified criterion (select, subtree)
and removing nodes (prune). Compare trees (getcanonical) and use
Newick-formatted strings (getnewickstr).

Microarray Data Analysis
MATLAB is widely used for microarray data analysis. However, the standard
normalization and visualization tools that scientists use can be difficult to
implement. Bioinformatics Toolbox includes these standard functions.

Microarray data — Read Affymetrix GeneChip files (affyread) and plot
data (probesetplot), ImaGene results files (imageneread), SPOT files
(sptread) and Agilent microarray scanner files (agferead). Read GenePix
GPR files (gprread) and GAL files (galread). Get Gene Expression Omnibus
(GEO) data from the web (getgeodata) and read GEO data from files
(geosoftread).

A utility function (magetfield) extracts data from one of the microarray
reader functions (gprread, agferead, sptread, imageneread).

1-12

Features and Functions

Microarray normalization and filtering — The toolbox provides a
number of methods for normalizing microarray data, such as lowess
normalization (malowess) and mean normalization (manorm), or across
multiple arrays (quantilenorm). You can use filtering functions to clean
raw data before analysis (geneentropyfilter, genelowvalfilter,
generangefilter, genevarfilter), and calculate the range and variance of
values (exprprofrange, exprprofvar).

Microarray visualization — The toolbox contains routines for visualizing
microarray data. These routines include spatial plots of microarray data
(maimage, redgreencmap), box plots (maboxplot), loglog plots (maloglog),
and intensity-ratio plots (mairplot). You can also view clustered expression
profiles (clustergram, redgreencmap). You can create 2-D scatter plots of
principal components from the microarray data (mapcaplot).

Microarray utility functions — Use the following functions to work with
Affymetrix and GeneChip data sets. Get library information for a probe
(probelibraryinfo), gene information from a probe set (probesetlookup),
and probe set values from CEL and CDF information (probesetvalues).
Show probe set information from NetAffx (probesetlink) and plot probe
set values (probesetplot).

The toolbox accesses statistical routines to perform cluster analysis and
to visualize the results, and you can view your data through statistical
visualizations such as dendrograms, classification, and regression trees.

Mass Spectrometry Data Analysis
The mass spectrometry functions preprocess and classify raw data from
SELDI-TOF and MALDI-TOF spectrometers.

Reading raw data into MATLAB — Load raw mass/charge and ion
intensity data from comma-separated-value (CSV) files, or read a JCAMP-DX
formatted file with mass spectrometry data (jcampread) into MATLAB.

You can also have data in TXT files and use the importdata function.

Preprocessing raw data — Resample high-resolution data to a lower
resolution (msresample) where the extra data points are not needed. Correct
the baseline (msbackadj). Align a spectrum to a set of reference masses

1-13

1 Getting Started

(msalign) and visually verify the alignment (msheatmap). Normalize the
area between spectra for comparing (msnorm), and filter out noise (mslowess
and mssgolay).

Spectrum analysis — Load spectra into a GUI (msviewer) for selecting mass
peaks and further analysis.

The following graphic illustrates the roles of the various mass spectrometry
functions in Bioinformatics Toolbox:

1-14

Features and Functions

�������	
	
����
���������
��

������
����	������

������� ����������	�

��������	�

�
��	������

�
��	���

���

���������

�����	��

����������

�������
���
���

���

��		
����
��
������

��������

 ��
���
�

 ���	
���
��
���
�

1-15

1 Getting Started

Graph Theory Functions
Graph theory functions in Bioinformatics Toolbox apply basic graph theory
algorithms to sparse matrices. A sparse matrix represents a graph, any
nonzero entries in the matrix represent the edges of the graph, and the values
of these entries represent the associated weight (cost, distance, length, or
capacity) of the edge. Graph algorithms that use the weight information will
cancel the edge if a NaN or an Inf is found. Graph algorithms that do not use
the weight information will consider the edge if a NaN or an Inf is found,
because these algorithms look only at the connectivity described by the sparse
matrix and not at the values stored in the sparse matrix.

Sparse matrices can represent four types of graphs:

• Directed Graph — Sparse matrix, either double real or logical. Row
(column) index indicates the source (target) of the edge. Self-loops (values
in the diagonal) are allowed, although most of the algorithms ignore these
values.

• Undirected Graph — Lower triangle of a sparse matrix, either double
real or logical. An algorithm expecting an undirected graph ignores values
stored in the upper triangle of the sparse matrix and values in the diagonal.

• Direct Acyclic Graph (DAG) — Sparse matrix, double real or logical,
with zero values in the diagonal. While a zero-valued diagonal is a
requirement of a DAG, it does not guarantee a DAG. An algorithm expecting
a DAG will not test for cycles because this will add unwanted complexity.

• Spanning Tree — Undirected graph with no cycles and with one
connected component.

There are no attributes attached to the graphs; sparse matrices representing
all four types of graphs can be passed to any graph algorithm. All functions
will return an error on nonsquare sparse matrices.

Graph algorithms do not pretest for graph properties because such tests can
introduce a time penalty. For example, there is an efficient shortest path
algorithm for DAG, however testing if a graph is acyclic is expensive compared
to the algorithm. Therefore, it is important to select a graph theory function
and properties appropriate for the type of the graph represented by your
input matrix. If the algorithm receives a graph type that is different from
what it expects, it will either:

1-16

Features and Functions

• Return an error when it reaches an inconsistency, for example, if you pass a
cyclic graph to the graphshortestpath function and specify Acyclic as
the method property.

• Produce an invalid result. For example, if you pass a directed graph to a
function with an algorithm that expects an undirected graph, it will ignore
values in the upper triangle of the sparse matrix.

The graph theory functions include graphallshortestpaths, graphconncomp,
graphisdag, graphisomorphism, graphisspantree, graphmaxflow,
graphminspantree, graphpred2path, graphshortestpath, graphtopoorder,
graphtraverse.

Graph Visualization
Bioinformatics Toolbox includes functions, objects, and methods for creating,
viewing, and manipulating graphs, such as interaction maps, hierarchy plots,
and pathways.

The object constructor function (biograph) lets you create a biograph object to
hold graph data. Methods of the biograph object let you calculate the position
of nodes (dolayout), draw the graph (view), get handles to the nodes and
edges (getnodesbyid and getedgesbynodeid) to further query information,
and find relations between the nodes (getancestors, getdescendants,
andgetrelatives). There are also methods that apply basic graph theory
algorithms to the biograph object.

Various properties of a biograph object let you programmatically change the
properties of the rendered graph. You can customize the node representation,
for example, drawing pie charts inside every node (CustomNodeDrawFcn). Or
you can associate your own callback functions to nodes and edges of the graph,
for example, opening a Web page with more information about the nodes
(NodeCallback and EdgeCallback).

Statistical Learning and Visualization
Bioinformatics Toolbox provides functions that build on the classification
and statistical learning tools in Statistics Toolbox (classify, kmeans,
andtreefit).

1-17

1 Getting Started

These functions include imputation tools (knnimpute), support vector machine
classifiers (svmclassify, svmtrain) and K-nearest neighbor classifiers
(knnclassify).

Other functions include set up of cross-validation experiments (crossvalind)
and comparison of the performance of different classification methods
(classperf). In addition, there are tools for selecting diversity and
discriminating features (rankfeatures, randfeatures).

Prototyping and Development Environment
MATLAB is a prototyping and development environment where you can
create algorithms and easily compare alternatives.

• Integrated environment — Explore biological data in an environment
that integrates programming and visualization. Create reports and plots
with the built-in functions for mathematics, graphics, and statistics.

• Open environment — Access the source code for Bioinformatics Toolbox
functions. The toolbox includes many of the basic bioinformatics functions
you will need to use, and it includes prototypes for some of the more
advanced functions. Modify these functions to create your own custom
solutions.

• Interactive programming language — Test your ideas by typing
functions that are interpreted interactively with a language whose basic
data element is an array. The arrays do not require dimensioning and allow
you to solve many technical computing problems,

Using matrices for sequences or groups of sequences allows you to work
efficiently and not worry about writing loops or other programming controls.

• Programming tools — Use a visual debugger for algorithm development
and refinement and an algorithm performance profiler to accelerate
development.

Data Visualization
In addition, MATLAB 2-D and volume visualization features let you create
custom graphical representations of multidimensional data sets. You can also
create montages and overlays, and export finished graphics to a PostScript
image file or copy directly into Microsoft PowerPoint.

1-18

Features and Functions

Algorithm Sharing and Application Deployment
The open MATLAB environment lets you share your analysis solutions
with other MATLAB users, and it includes tools to create custom software
applications. With the addition of the MATLAB Compiler, you can create
stand-alone applications independent of MATLAB, and with the addition of
MATLAB Builder for COM, you can create GUIs and stand-alone applications
within other programming environments.

• Share algorithms with other MATLAB users — You can share data
analysis algorithms created in the MATLAB language across all MATLAB
supported platforms by giving M-files to other MATLAB users. You can
also create GUIs within MATLAB using the Graphical User Interface
Development Environment (GUIDE).

• Deploy MATLAB GUIs — Create a GUI within MATLAB using GUIDE,
and then use the MATLAB Compiler to create a stand-alone GUI
application that runs separately from MATLAB.

• Create dynamic link libraries (DLL) — Use the MATLAB compiler to
create dynamic link libraries (DLLs) for your functions, and then link these
libraries to other programming environments such as C and C++.

• Create COM objects — Use MATLAB Builder for COM to create COM
objects, and then use a COM compatible programming environment (Visual
Basic) to create a stand-alone application.

• Create Excel add-ins — Use MATLAB Builder for Excel to create
Excel add-in functions, and then use the add-in functions with Excel
spreadsheets.

• Create Java™ classes — Use MATLAB Builder for Java to automatically
generate Java classes from MATLAB algorithms. You can run these
MATLAB based classes outside the MATLAB environment.

1-19

1 Getting Started

1-20

2

Sequence Analysis

Sequence analysis is the process you use to find information about a nucleotide
or amino acid sequence using computational methods. Common tasks in
sequence analysis are identifying genes, determining the similarity of two
genes, determining the protein coded by a gene, and determining the function
of a gene by finding a similar gene in another organism with a know function.

Example: Sequence Statistics (p. 2-2) Starting with a DNA sequence,
calculate statistics for the nucleotide
content.

Example: Sequence Alignment
(p. 2-18)

Starting with a DNA sequence for
a human gene, locate and verify
a corresponding gene in a model
organism.

Sequence Tool (p. 2-37) Use a graphical interface for the
sequence functions.

Multiple Sequence Alignment
Viewer (p. 2-48)

Use a graphical interface to visually
inspect a multiple alignment and
make manual adjustments.

2 Sequence Analysis

Example: Sequence Statistics
After sequencing a piece of DNA, one of the first tasks is to investigate the
nucleotide content in the sequence. Starting with a DNA sequence, this
example uses sequence statistics functions to determine mono-, di-, and
trinucleotide content, and to locate open reading frames.

Determining Nucleotide Content
(p. 2-2)

Use the MATLAB Help browser to
search the Web for information.

Getting Sequence Information into
MATLAB (p. 2-4)

Find a nucleotide sequence in
a public database and read the
sequence information into MATLAB.

Determining Nucleotide Composition
(p. 2-5)

Determine the monomers and
dimers, and then visualize data in
graphs and bar plots.

Determining Codon Composition
(p. 2-9)

Look at codons for the six reading
frames.

Open Reading Frames (p. 2-12) Locate the open reading frames
using a specific genetic code.

Amino Acid Conversion and
Composition (p. 2-15)

Extract the protein-coding sequence
from a gene sequence and convert it
to the amino acid sequence for the
protein.

Determining Nucleotide Content
In this example you are interested in studying the human mitochondrial
genome. While many genes that code for mitochondrial proteins are found in
the cell nucleus, the mitochondrial has genes that code for proteins used to
produce energy.

First research information about the human mitochondria and find the
nucleotide sequence for the genome. Next, look at the nucleotide content for
the entire sequence. And finally, determine open reading frames and extract
specific gene sequences.

2-2

Example: Sequence Statistics

1 Use the MATLAB Help browser to explore the Web. In the MATLAB
Command Window, type

web('http://www.ncbi.nlm.nih.gov/')

A separate browser window opens with the home page for the NCBI Web
site.

2 Search the NCBI Web site for information. For example, to search for the
human mitochondrion genome, from the Search list, select Genome, and in
the for box, enter mitochondrion homo sapiens.

The NCBI Web search returns a list of links to relevant pages.

3 Select a result page. For example, click the link labeled NC_001807.

The MATLAB Help browser displays the NCBI page for the human
mitochondrial genome.

2-3

2 Sequence Analysis

Getting Sequence Information into MATLAB
Many public databases for nucleotide sequences are accessible from the Web.
The MATLAB Command Window provides an integrated environment for
bringing sequence information into MATLAB.

The consensus sequence for the human mitochondrial genome has the
GenBank accession number NC_001807. Since the whole GenBank entry is
quite large and you might only be interested in the sequence, you can get
just the sequence information.

2-4

Example: Sequence Statistics

1 Get sequence information from a Web database. For example, to get
sequence information for the human mitochondrial genome, in the
MATLAB Command Window, type

mitochondria = getgenbank('NC_001807','SequenceOnly',true);

MATLAB gets the nucleotide sequence from the GenBank database and
creates a character array.

mitochondria =
gatcacaggtctatcaccctattaaccactcacgggagctctccatgcat
ttggtattttcgtctggggggtgtgcacgcgatagcattgcgagacgctg
gagccggagcaccctatgtcgcagtatctgtctttgattcctgcctcatt
ctattatttatcgcacctacgttcaatattacaggcgaacatacctacta
aagt . . .

2 If you don’t have a Web connection, you can load the data from a MAT-file
included with Bioinformatics Toolbox, using the command

load mitochondria

MATLAB loads the sequence mitochondria into the MATLAB workspace.

3 Get information about the sequence. Type

whos mitochondria

MATLAB displays information about the size of the sequence.

Name Size Bytes Class
mitochondria 1x16571 33142 char array

Grand total is 16571 elements using 33142 bytes

Determining Nucleotide Composition
Sections of a DNA sequence with a high percent of A+T nucleotides usually
indicate intergenic parts of the sequence, while low A+T and higher G+C
nucleotide percentages indicate possible genes. Many times high CG
dinucleotide content is located before a gene.

2-5

2 Sequence Analysis

After you read a sequence into MATLAB, you can use the sequence
statistics functions to determine if your sequence has the characteristics of a
protein-coding region. This procedure uses the human mitochondrial genome
as an example. See “Getting Sequence Information into MATLAB” on page
2-4.

1 Plot monomer densities and combined monomer densities in a graph. In
the MATLAB Command Window, type

ntdensity(mitochondria)

This graph shows that the genome is A+T rich.

2 Count the nucleotides using the function basecount.basecount(mitochondria)

A list of nucleotide counts is shown for the 5’-3’ strand.ans =
A: 5113
C: 5192

2-6

Example: Sequence Statistics

G: 2180
T: 4086

3 Count the nucleotides in the reverse complement of a sequence using the
function seqrcomplement.

basecount(seqrcomplement(mitochondria))

As expected, the nucleotide counts on the reverse complement strand are
complementary to the 5’-3’ strand.

ans =
A: 4086
C: 2180
G: 5192
T: 5113

4 Use the function basecount with the chart option to visualize the
nucleotide distribution.

basecount(mitochondria,'chart','pie');

MATLAB draws a pie chart in a figure window.

2-7

2 Sequence Analysis

5 Count the dimers in a sequence and display the information in a bar chart.

dimercount(mitochondria,'chart','bar')

MATLAB lists the dimer counts and draws a bar chart.

2-8

Example: Sequence Statistics

Determining Codon Composition
Trinucleotides (codon) code for an amino acid, and there are 64 possible codons
in a nucleotide sequence. Knowing the percent of codons in your sequence can
be helpful when you are comparing with tables for expected codon usage.

After you read a sequence into MATLAB, you can analyze the sequence for
codon composition. This procedure uses the human mitochondria genome as
an example. See “Getting Sequence Information into MATLAB” on page 2-4.

1 Count codons in a nucleotide sequence. In the MATLAB Command Window,
type

codoncount(mitochondria)

MATLAB displays the codon counts for the first reading frame.

AAA-172 AAC-157 AAG-67 AAT-123
ACA-153 ACC-163 ACG-42 ACT-130
AGA-58 AGC-90 AGG-50 AGT-43
ATA-132 ATC-103 ATG-57 ATT-96
CAA-166 CAC-167 CAG-68 CAT-135

2-9

2 Sequence Analysis

CCA-146 CCC-215 CCG-50 CCT-182
CGA-33 CGC-60 CGG-18 CGT-20
CTA-187 CTC-126 CTG-52 CTT-98
GAA-68 GAC-62 GAG-47 GAT-39
GCA-67 GCC-87 GCG-23 GCT-61
GGA-53 GGC-61 GGG-23 GGT-25
GTA-61 GTC-49 GTG-26 GTT-36
TAA-136 TAC-127 TAG-82 TAT-107
TCA-143 TCC-126 TCG-37 TCT-103
TGA-64 TGC-35 TGG-27 TGT-25
TTA-115 TTC-113 TTG-37 TTT-99

2 Count the codons in all six reading frames and plot the results in a heat
map.

for frame = 1:3
figure('color',[1 1 1])
subplot(2,1,1);
codoncount(mitochondria,'frame',frame,'figure',true);
title(sprintf('Codons for frame %d',frame));
subplot(2,1,2);
codoncount(mitochondria,'reverse',true,...

'frame',frame,...
'figure',true);

title(sprintf('Codons for reverse frame %d',frame));
end

MATLAB draws heat maps to visualize all 64 codons in the six reading
frames.

2-10

Example: Sequence Statistics

2-11

2 Sequence Analysis

Open Reading Frames
Determining the protein-coding sequence for a eukaryotic gene can be a
difficult task because introns (noncoding sections) are mixed with exons.
However, prokaryotic genes generally do not have introns and mRNA
sequences have the introns removed. Identifying the start and stop codons
for translation determines the protein-coding section, or open reading frame
(ORF), in a sequence. Once you know the ORF for a gene or mRNA, you can
translate a nucleotide sequence to its corresponding amino acid sequence.

After you read a sequence into MATLAB, you can analyze the sequence for
open reading frames. This procedure uses the human mitochondria genome as
an example. See “Getting Sequence Information into MATLAB” on page 2-4.

1 Display open reading frames (ORFs) in a nucleotide sequence. In the
MATLAB Command Window, type

seqshoworfs(mitochondria);

If you compare this output to the genes shown on the NCBI page for
NC_001807, there are fewer genes than expected. This is because vertebrate

2-12

Example: Sequence Statistics

mitochondria use a genetic code slightly different from the standard genetic
code. For a table of genetic codes, see “Genetic Code”.

2 Display ORFs using the Vertebrate Mitochondrial code.

orfs= seqshoworfs(mitochondria,...
'GeneticCode','Vertebrate Mitochondrial',...
'alternativestart',true);

Notice that there are now two large ORFs on the first reading frame. One
starts at position 4471 and the other starts at 5905. These correspond to
the genes ND2 (NADH dehydrogenase subunit 2 [Homo sapiens]) and
COX1 (cytochrome c oxidase subunit I) genes.

3 Find the corresponding stop codon. The start and stop positions for ORFs
have the same indices as the start positions in the fields Start and Stop.

ND2Start = 4471;
StartIndex = find(orfs(1).Start == ND2Start)
ND2Stop = orfs(1).Stop(StartIndex)

MATLAB displays the stop position.

ND2Stop =
5512

4 Using the sequence indices for the start and stop of the gene, extract the
subsequence from the sequence.

ND2Seq = mitochondria(ND2Start:ND2Stop);
codoncount (ND2Seq)

The subsequence (protein-coding region) is stored in ND2Seq and displayed
on the screen.

attaatcccctggcccaacccgtcatctactctaccatctttgcaggcac
actcatcacagcgctaagctcgcactgattttttacctgagtaggcctag
aaataaacatgctagcttttattccagttctaaccaaaaaaataaaccct
cgttccacagaagctgccatcaagtatttcctcacgcaagcaaccgcatc
cataatccttc . . .

2-13

2 Sequence Analysis

5 Determine the codon distribution.

codoncount (ND2Seq)

The codon count shows a high amount of ACC, ATA, CTA, and ATC.

AAA-10 AAC-14 AAG-2 AAT-6
ACA-11 ACC-24 ACG-3 ACT-5
AGA-0 AGC-4 AGG-0 AGT-1
ATA-22 ATC-24 ATG-2 ATT-8
CAA-8 CAC-3 CAG-2 CAT-1
CCA-4 CCC-12 CCG-2 CCT-5
CGA-0 CGC-3 CGG-0 CGT-1
CTA-26 CTC-18 CTG-4 CTT-7
GAA-5 GAC-0 GAG-1 GAT-0
GCA-8 GCC-7 GCG-1 GCT-4
GGA-5 GGC-7 GGG-0 GGT-1
GTA-3 GTC-2 GTG-0 GTT-3
TAA-0 TAC-8 TAG-0 TAT-2
TCA-7 TCC-11 TCG-1 TCT-4
TGA-10 TGC-0 TGG-1 TGT-0
TTA-8 TTC-7 TTG-1 TTT-8

6 Look up the amino acids for codons ATA, CTA, ACC, and ATC.

aminolookup('code',nt2aa('ATA'))
aminolookup('code',nt2aa('CTA'))
aminolookup('code',nt2aa('ACC'))
aminolookup('code',nt2aa('ATC'))

MATLAB displays the following

Ile isoleucine
Leu leucine
Thr threonine
Ile isoleucine

2-14

Example: Sequence Statistics

Amino Acid Conversion and Composition
Determining the relative amino acid composition of a protein will give you a
characteristic profile for the protein. Often, this profile is enough information
to identify a protein. Using the amino acid composition, atomic composition,
and molecular weight, you can also search public databases for similar
proteins.

After you locate an open reading frame (ORF) in a gene, you can convert it to
an amino sequence and determine its amino acid composition. This procedure
uses the human mitochondria genome as an example. See “Open Reading
Frames” on page 2-12.

1 Convert a nucleotide sequence to an amino acid sequence. In this example,
only the protein-coding sequence between the start and stop codons is
converted.

ND2AASeq = nt2aa(ND2Seq,'geneticcode',...
'Vertebrate Mitochondrial');

The sequence is converted using the Vertebrate Mitochondrial genetic
code. Because the property AlternativeStartCodons is set to 'true' by
default, the first codon att is converted to M instead of I.

MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIPVLTKKMNP
RSTEAAIKYFLTQATASMILLMAILFNNMLSGQWTMTNTTNQYSSLMIMM
AMAMKLGMAPFHFWVPEVTQGTPLTSGLLLLTWQKLAPISIMYQISPSLN
VSLLLTLSILSIMAGSWGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNM
TILNLTIYIILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLS
LGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYST
SITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL

2 Compare your conversion with the published conversion in GenPept.

ND2protein = getgenpept('NP_536844','sequenceonly',true)

MATLAB gets the published conversion from the NCBI database and reads
it into the MATLAB workspace.

3 Count the amino acids in the protein sequence.

2-15

2 Sequence Analysis

aacount(ND2AASeq, 'chart','bar')

MATLAB draws a bar graph. Notice the high content for leucine, threonine
and isoleucine, and also notice the lack of cysteine and aspartic acid.

4 Determine the atomic composition and molecular weight of the protein.

atomiccomp(ND2AASeq)
molweight (ND2AASeq)

MATLAB displays the following.

ans =
C: 1818
H: 3574
N: 420
O: 817
S: 25

ans =
3.8960e+004

2-16

Example: Sequence Statistics

If this sequence was unknown, you could use this information to identify
the protein by comparing it with the atomic composition of other proteins
in a database.

2-17

2 Sequence Analysis

Example: Sequence Alignment
Determining the similarity between two sequences is a common task in
computational biology. Starting with a nucleotide sequence for a human gene,
this example uses alignment algorithms to locate a similar gene in another
organism.

Finding a Model Organism to Study
(p. 2-18)

Use the MATLAB Help browser to
search the Web for information.

Getting Sequence Information from
a Public Database (p. 2-20)

Find the nucleotide sequence for a
human gene in a public database
and read the sequence information
into MATLAB.

Searching a Public Database for
Related Genes (p. 2-23)

Find the nucleotide sequence for a
mouse gene related to a human gene,
and read the sequence information
into MATLAB.

Locating Protein Coding Sequences
(p. 2-25)

Convert a sequence from nucleotides
to amino acids and identify the open
reading frames

Comparing Amino Acid Sequences
(p. 2-28)

Use global and local alignment
functions to compare two amino acid
sequences.

Finding a Model Organism to Study
In this example, you are interested in studying Tay-Sachs disease. Tay-Sachs
is an autosomal recessive disease caused by the absence of the enzyme
beta-hexosaminidase A (Hex A). This enzyme is responsible for the breakdown
of gangliosides (GM2) in brain and nerve cells.

First, research information about Tay-Sachs and the enzyme that is associated
with this disease, then find the nucleotide sequence for the human gene
that codes for the enzyme, and finally find a corresponding gene in another
organism to use as a model for study.

2-18

Example: Sequence Alignment

1 Use the MATLAB Help browser to explore the Web. In the MATLAB
Command window, type

web('http://www.ncbi.nlm.nih.gov/')

The MATLAB Help browser opens with the home page for the NCBI web
site.

2 Search the NCBI Web site for information. For example, to search for
Tay-Sachs, from the Search list, select NCBI Web Site, and in the for
box, enter Tay-Sachs.

The NCBI Web search returns a list of links to relevant pages.

3 Select a result page. For example, click the link labeled Tay-Sachs Disease

A page in the genes and diseases section of the NCBI Web site opens. This
section provides a comprehensive introduction to medical genetics. In
particular, this page contains an introduction and pictorial representation

2-19

2 Sequence Analysis

of the enzyme Hex A and its role in the metabolism of the lipid GM2
ganglioside.

4 After completing your research, you have concluded the following:

The gene HEXA codes for the alpha subunit of the dimer enzyme
hexosaminidase A (Hex A), while the gene HEXB codes for the beta subunit
of the enzyme. A third gene, GM2A, codes for the activator protein GM2.
However, it is a mutation in the gene HEXA that causes Tay-Sachs.

Getting Sequence Information from a Public Database
Many public databases for nucleotide sequences (for example, GenBank,
EMBL-EBI) are accessible from the Web. The MATLAB Command Window
with the MATLAB Help browser provide an integrated environment for
searching the Web and bringing sequence information into MATLAB.

After you locate a sequence, you need to move the sequence data into the
MATLAB workspace.

2-20

Example: Sequence Alignment

1 Open the MATLAB Help browser to the NCBI web site. In the MATLAB
Command Widow, type

web('http://www.ncbi.nlm.nih.gov/')

The MATLAB Help browser window opens with the NCBI home page.

2 Search for the gene you are interested in studying. For example, from the
Search list, select Nucleotide, and in the for box enter Tay-Sachs.

The search returns entries for the genes that code the alpha and beta
subunits of the enzyme hexosaminidase A (Hex A), and the gene that codes
the activator enzyme. The NCBI reference for the human gene HEXA has
accession number NM_000520.

2-21

2 Sequence Analysis

3 Get sequence data into MATLAB. For example, to get sequence information
for the human gene HEXA, type

humanHEXA = getgenbank('NM_000520')

Note Blank spaces in GenBank accession numbers use the underline
character. Entering 'NM 00520' returns the wrong entry.

The human gene is loaded into the MATLAB workspace as a structure.

humanHEXA =

LocusName: 'NM_000520'

LocusSequenceLength: '2255'

LocusNumberofStrands: ''

LocusTopology: 'linear'

2-22

Example: Sequence Alignment

LocusMoleculeType: 'mRNA'

LocusGenBankDivision: 'PRI'

LocusModificationDate: '13-AUG-2006'

Definition: 'Homo sapiens hexosaminidase A (alpha polypeptide) (HEXA), mRNA.'

Accession: 'NM_000520'

Version: 'NM_000520.2'

GI: '13128865'

Project: []

Keywords: []

Segment: []

Source: 'Homo sapiens (human)'

SourceOrganism: [4x65 char]

Reference: {1x58 cell}

Comment: [15x67 char]

Features: [74x74 char]

CDS: [1x1 struct]

Sequence: [1x2255 char]

SearchURL: [1x108 char]

RetrieveURL: [1x97 char]

Searching a Public Database for Related Genes
The sequence and function of many genes is conserved during the evolution of
species through homologous genes. Homologous genes are genes that have
a common ancestor and similar sequences. One goal of searching a public
database is to find similar genes. If you are able to locate a sequence in a
database that is similar to your unknown gene or protein, it is likely that the
function and characteristics of the known and unknown genes are the same.

After finding the nucleotide sequence for a human gene, you can do a BLAST
search or search in the genome of another organism for the corresponding
gene. This procedure uses the mouse genome as an example.

1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB
Command window, type

web('http://www.ncbi.nlm.nih.gov')

2 Search the nucleotide database for the gene or protein you are interested in
studying. For example, from the Search list, select Nucleotide, and in the
for box enter hexosaminidase A.

2-23

2 Sequence Analysis

The search returns entries for the mouse and human genomes. The NCBI
reference for the mouse gene HEXA has accession number AK080777.

3 Get sequence information for the mouse gene into MATLAB. Type

mouseHEXA = getgenbank('AK080777')

2-24

Example: Sequence Alignment

The mouse gene sequence is loaded into the MATLAB workspace as a
structure.

mouseHEXA =

LocusName: 'AK080777'
LocusSequenceLength: '1839'

LocusNumberofStrands: ''
LocusTopology: 'linear'

LocusMoleculeType: 'mRNA'
LocusGenBankDivision: 'HTC'

LocusModificationDate: '02-SEP-2005'
Definition: [1x150 char]
Accession: 'AK080777'

Version: 'AK080777.1'
GI: '26348756'

Project: []
Keywords: 'HTC; CAP trapper.'
Segment: []
Source: 'Mus musculus (house mouse)'

SourceOrganism: [4x65 char]
Reference: {1x8 cell}

Comment: [8x66 char]
Features: [33x74 char]

CDS: [1x1 struct]
Sequence: [1x1839 char]

SearchURL: [1x107 char]
RetrieveURL: [1x97 char]

Locating Protein Coding Sequences
A nucleotide sequence includes regulatory sequences before and after the
protein coding section. By analyzing this sequence, you can determine the
nucleotides that code for the amino acids in the final protein.

After you have a list of genes you are interested in studying, you can
determine the protein coding sequences. This procedure uses the human gene
HEXA and mouse gene HEXA as an example.

2-25

2 Sequence Analysis

1 If you did not retrieve gene data from the Web, you can load example data
from a MAT-file included with Bioinformatics Toolbox. In the MATLAB
Command window, type

load hexosaminidase

MATLAB loads the structures humanHEXA and mouseHEXA into the MATLAB
workspace.

2 Look for open reading frames in the human gene. For example, for the
human gene HEXA, type

humanORFs=seqshoworfs(humanHEXA.Sequence)

seqshoworfs creates the output structure humanORFs. This structure gives
the position of the start and stop codons for all open reading frames (ORFs)
on each reading frame.

humanORFs =

1x3 struct array with fields:
Start
Stop

The Help browser opens with a listing for the three reading frames with
the ORFs colored blue, red, and green. Notice that the longest ORF is
on the third reading frame.

2-26

Example: Sequence Alignment

3 Locate open reading frames (ORFs) on the mouse gene. Type

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

seqshoworfs creates the structure mouseORFS.

mouseORFs =

1x3 struct array with fields:
Start

2-27

2 Sequence Analysis

Stop

The mouse gene shows the longest ORF on the first reading frame.

Comparing Amino Acid Sequences
You could use alignment functions to look for similarities between two
nucleotide sequences, but alignment functions return more biologically
meaningful results when you are using amino acid sequences.

After you have located the open reading frames on your nucleotide sequences,
you can convert the protein coding sections of the nucleotide sequences to
their corresponding amino acid sequences, and then you can compare them
for similarities.

2-28

Example: Sequence Alignment

1 Using the identified open reading frames, convert the DNA sequence to the
amino acid sequences. Type

mouseProtein = nt2aa(mouseHEXA.Sequence)

Remember that the human HEXA gene was on the third reading frame, so
you need to indicate which frame to use.

humanProtein = nt2aa(humanHEXA.Sequence,'frame',3)

2 Draw a dot plot comparing the human and mouse amino acid sequences.
Type

seqdotplot(mouseProtein,humanProtein,4,3)
ylabel('Mouse hexosaminidase A (alpha subunit)')
xlabel('Human hexosaminidase A (alpha subunit)')

Dot plots are one of the easiest ways to look for similarity between
sequences. The diagonal line shown below indicates that there may be a
good alignment between the two sequences.

2-29

2 Sequence Analysis

3 Globally align the two amino acid sequences, using the Needleman-Wunsch
algorithm. Type

[GlobalScore, GlobalAlignment] = nwalign(humanProtein,...
mouseProtein)

showalignment(GlobalAlignment)

showalignment displays the global alignment of the two sequences in
the Help browser. Notice that the calculated identity between the two
sequences is 64.5 %.

2-30

Example: Sequence Alignment

2-31

2 Sequence Analysis

The alignment is very good for the first 550 nucleotides, after which the
two sequences appear to be unrelated. Notice that there is a stop (*) in the
sequence at this point. If you shorten the sequence to include only the
amino acids that are in the protein (after the first methionine and before
the first stop) you might get a better alignment.

4 Trim the sequence from the first start amino acid (usually M) to the first
stop (first *) and then try alignment again. Find the indices for the stops
in the sequences.

humanStops = find(humanProtein == '*')

humanStops =
538 550 652 661 669

mouseStops = find(mouseProtein =='*')

mouseStops =

539 557 574 606

Looking at the amino acid sequence for humanProtein, the first M is at
position 9, while the first M for the mouse protein is at 11.

5 Truncate the sequence to include only amino acids in the protein and the
stop.

humanProteinORF = humanProtein(9:humanStops(1));

humanProteinORF =
MTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYVLYPNNFQFQYDV
SSAAQPGCSVLDEAFQRYRDLLFGSGSWPRPYLTGKRHTLEKNVLVVSVV
TPGCNQLPTLESVENYTLTINDDQCLLLSETVWGALRGLETFSQLVWKSA
EGTFFINKTEIEDFPRFPHRGLLLDTSRHYLPLSSILDTLDVMAYNKLNV
FHWHLVDDPSFPYESFTFPELMRKGSYNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEF
MSTFFLEVSSVFPDFYLHLGGDEVDFTCWKSNPEIQDFMRKKGFGEDFKQ
LESFYIQTLLDIVSSYGKGYVVWQEVFDNKVKIQPDTIIQVWREDIPVNY
MKELELVTKAGFRALLSAPWYLNRISYGPDWKDFYVVEPLAFEGTPEQKA
LVIGGEACMWGEYVDNTNLVPRLWPRAGAVAERLWSNKLTSDLTFAYERL

2-32

Example: Sequence Alignment

SHFRCELLRRGVQAQPLNVGFCEQEFEQT*

mouseProteinORF = mouseProtein(11:mouseStops(1))

mouseProteinORF =
MAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYTLYPNNFQFRYHV
SSAAQAGCVVLDEAFRRYRNLLFGSGSWPRPSFSNKQQTLGKNILVVSVV
TAECNEFPNLESVENYTLTINDDQCLLASETVWGALRGLETFSQLVWKSA
EGTFFINKTKIKDFPRFPHRGVLLDTSRHYLPLSSILDTLDVMAYNKFNV
FHWHLVDDSSFPYESFTFPELTRKGSFNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGAPGLLTPCYSGSHLSGTFGPVNPSLNSTYDF
MSTLFLEISSVFPDFYLHLGGDEVDFTCWKSNPNIQAFMKKKGFTDFKQL
ESFYIQTLLDIVSDYDKGYVVWQEVFDNKVKVRPDTIIQVWREEMPVEYM
LEMQDITRAGFRALLSAPWYLNRVKYGPDWKDMYKVEPLAFHGTPEQKAL
VIGGEACMWGEYVDSTNLVPRLWPRAGAVAERLWSSNLTTNIDFAFKRLS
HFRCELVRRGIQAQPISVGCCEQEFEQT*

6 Globally align the trimmed amino acid sequences. Type

[Score, Alignment] = nwalign(humanProteinORF,...
mouseProteinORF);

showalignment(Alignment)

showalignment displays the results for the second global alignment. Notice
that the percent identity for the untrimmed sequences is 54% and with
trimmed sequences 83.3 percent.

2-33

2 Sequence Analysis

7 Another way to truncate an amino acid sequence to only those amino acids
in the protein is to first truncate the nucleotide sequence with indices from
the function seqshoworfs. Remember that the ORF for the human HEXA
gene was on the third reading frame, and the ORF for the mouse HEXA
was on the first reading frame.

2-34

Example: Sequence Alignment

humanORFs = seqshoworfs(humanHEXA.Sequence);
mouseORFs = seqshoworfs(humanHEXA.Sequence);

humanPORF = nt2aa(humanHEXA.Sequence(humanORFs(3).Start(1):...
humanORFs(3).Stop(1)))

mousePORF = nt2aa(mouseHEXA.Sequence(mouseORFs(1).Start(1):...
mouseORFs(1).Stop(1)))

[Scale, Alignment] = nwalign(humanPORF, mousePORF)

Show the alignment in the Help browser.

showalignment(Alignment)

The result from first truncating a nucleotide sequence before converting
to an amino acid sequence is the same as the result from truncating the
amino acid sequence after conversion. See the result in step 6.

An alternative method to working with subsequences is to use a local
alignment function with the nontruncated sequences.

8 Locally align the two amino acid sequences using a Smith-Waterman
algorithm. Type

[LocalScore, LocalAlignment] = swalign(humanProtein,...
mouseProtein)

LocalScore =
1057

LocalAlignment
RGDQR-AMTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYV . . .
|| | ||:: ||| |||||||:| ||||||||| :|| :||: . . .
RGAGRWAMAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYT . . .

swalign displays the local alignment of two sequences in the Help browser.

9 Show the alignment in color.

showalignment(LocalAlignment)

2-35

2 Sequence Analysis

2-36

Sequence Tool

Sequence Tool
The Sequence Tool is a graphical interface (GUI) that integrates many of the
sequence functions in Bioinformatics Toolbox. Instead of entering commands
in the MATLAB Command Window, you can select and enter options.

Importing a Sequence (p. 2-37) Get sequence information from the
NCBI Web database.

Viewing Nucleotide Sequence
Information (p. 2-39)

View a graphic representation of
sequence information for ORFs and
CDSs.

Searching for Words (p. 2-41) Search for characteristic words and
sequence patterns.

Exploring Open Reading Frames
(p. 2-42)

Identify the protein coding part of a
nucleotide sequence and copy it into
a new view.

Viewing Amino Acid Sequence
Statistics (p. 2-45)

View an amino acid sequence for
an ORF located in a nucleotide
sequence.

Importing a Sequence
The first step when analyzing a nucleotide or amino acid sequence is to
get sequence information into MATLAB. The seqtool, using functions in
Bioinformatics Toolbox, can connect to Web databases and read information
into MATLAB.

1 Open the sequence viewer. In the MATLAB Command Window, type

seqtool

The Sequence Viewer window opens without a sequence loaded. Notice
that the panes to the right and bottom are blank.

2 To get a sequence from the NCBI database, select File > Download
Sequence from NCBI.

The Download Sequence From NCBI dialog box opens.

2-37

2 Sequence Analysis

3 In the Enter Sequence box, type an accession number for an NCBI
database entry. For example, enter NM_000520 and select the Nucleotide
option button. This is the human gene HEXA that is associated with
Tay-Sachs disease.

MATLAB goes to the Web, loads information for the accession number you
entered, and calculates some basic statistics.

2-38

Sequence Tool

Viewing Nucleotide Sequence Information
After you import a sequence into seqtool, you can read information stored
with the sequence, or you can view graphic representations for ORFs and
CDSs.

1 In the left pane tree, click Comments. The right pane displays general
information about the sequence.

2 Now click Features. The right pane displays NCBI feature information,
including index numbers for a gene and any CDS sequences.

2-39

2 Sequence Analysis

3 Click ORF to show the search results for ORFs in the six reading frames.

4 Click Annotated CDS to show the protein coding part of a nucleotide
sequence.

2-40

Sequence Tool

Searching for Words
Search for sequence patterns like the TATAA box and patterns for specific
restriction enzymes.

1 From the Sequence menu, click Find Word.

2 In the Enter a Word box, type a sequence word or pattern. For example,
enter atg.

2-41

2 Sequence Analysis

seqtool searches and displays the location of the selected word.

3 To clear the display, on the toolbar, click the Clear Word Selection button

.

Exploring Open Reading Frames
Identifying coding sections of a nucleotide sequence is a common
bioinformatics task. After locating the coding part of a sequence, you can

2-42

Sequence Tool

copy it to a new view, translate it to an amino acid sequence, and continue
with your analysis.

1 In the left pane, click ORF.

seqtool displays the ORFs for the six reading frames in the right and
lower window.

2 Click the longest ORF on reading frame 3.

The ORF is highlighted to indicate the part of the sequence that is selected.

3 Right-click the selected ORF and then select Export to Workspace. Enter
the name of a variable. For example, enter NM_000520_ORF.

2-43

2 Sequence Analysis

4 From the File menu, click Import from Workspace. Enter the name of a
variable with an exported ORF. For example, enter NM_000520_ORF.

seqtool adds a tab at the bottom for the new sequence while leaving the
original sequence open.

5 In the left pane, click Full Translation. From the Display menu, point
to Amino Acid Residue Display and click One Letter Code.

seqtool displays the amino acid sequence below the nucleotide sequence.

2-44

Sequence Tool

Viewing Amino Acid Sequence Statistics
You can import your own amino acid sequence, or you can get a protein
sequence from the Genbank database. In this example, the Genbank accession
number NP_000511.1 is the alpha subunit for a human enzyme associated
with Tay-Sachs disease.

1 Select File > Download Sequence from NCBI.

The Download Sequence From NCBI dialog box opens.

2 In the Enter Sequence box, type an accession number for an NCBI
database entry. For example, enter NP_000511.1 and select the Protein
option button.

2-45

2 Sequence Analysis

MATLAB goes to the Web and loads sequence information for the accession
number you entered.

3 Select Display > Amino Acid Color Scheme, and then select either
Charge, Function, Hydrophobicity, Structure, or Tayor. For example,
select Charge.

The display colors change to highlight charge information about the amino
acid residues.

2-46

Sequence Tool

2-47

2 Sequence Analysis

Multiple Sequence Alignment Viewer
The Multiple Sequence Alignment Viewer is a graphical user interface
(GUI) that integrates many sequence and multiple alignment functions in
Bioinformatics Toolbox. Instead of entering commands in the MATLAB
Command Window, you can select options and manually adjust multiple
alignments.

Loading Sequence Data and Viewing
the Phylogenetic Tree (p. 2-48)

Load unaligned sequence data
into MATLAB and view it in a
phylogenetic tree.

Selecting a Subset of Data from the
Phylogenetic Tree (p. 2-49)

Select the human and chimp
branches.

Aligning Multiple Sequences
(p. 2-50)

Multiply align a set of sequences.

Adjusting Multiple Alignments
Manually (p. 2-51)

Manually adjust multiple sequence
alignment.

Loading Sequence Data and Viewing the
Phylogenetic Tree
Load unaligned sequence data into MATLAB and view it in a phylogenetic
tree.

1 Load sequence data.

load primatesdemodata

2 Create a phylogenetic tree.

tree = seqlinkage(seqpdist(primates),'single', primates);

3 View the phylogenetic tree.

view(tree)

MATLAB creates a phytree object in the workspace and loads the sequence
data into the Phylogenetic Tree Tool.

2-48

Multiple Sequence Alignment Viewer

Selecting a Subset of Data from the Phylogenetic Tree
Select the human and chimp branches.

1 From the toolbar, click the Prune icon.

2 Click the branches to prune (remove) from the tree. For this example, click
the branch nodes for gorillas, orangutans, and Neanderthals.

2-49

2 Sequence Analysis

3 Export the selected branches to a second tree. Select File > Export to
Workspace, and then click Only Displayed.

4 In the Export to dialog box, enter the name of a variable. For example,
enter tree2, and then click OK.

5 Extract sequences from the tree object.

primates2 = primates(seqmatch(get(tree2, 'Leafnames'),{primates.Header}));

Aligning Multiple Sequences
After selecting a set of related sequences, you can multiply align them and
view the results.

1 Align multiple sequences.

ma = multialign(primates2);

2 Load aligned sequences in the Multiple Alignment Viewer.

multialignviewer(ma);

2-50

Multiple Sequence Alignment Viewer

The aligned sequences appear in the Multiple Sequence Alignment Viewer.

Adjusting Multiple Alignments Manually
Algorithms for aligning multiple sequences do not always produce an optimal
result. By visually inspecting the alignment, you can identify areas that could
use a manual adjustment to improve the alignment.

1 Identify an area where you could improve the alignment.

2-51

2 Sequence Analysis

2 Click a letter to select it, and then move the cursor over the red direction
bar. The curser changes to a hand.

3 Click and drag the sequence to the right to insert a gap. If there is a gap to
the left, you can also move the sequence to the left and eliminate the gap.

2-52

Multiple Sequence Alignment Viewer

Alternately, to insert a gap, select a character, and then click the Insert
Gap icon on the toolbar or press the spacebar.

Note You cannot delete or add letters to a sequence, but you can add or
delete gaps. If all of the sequences at one alignment position have gaps,
you can delete that column of gaps.

4 Continue adding gaps and moving sequences to improve the alignment.

2-53

2 Sequence Analysis

2-54

3

Microarray Analysis

You can use gene expression profiles from microarray data to research the
function of cells, compare the differences between healthy and diseased tissue,
and observe changes with the application of drugs.

The examples in this chapter will help you to become more familiar with
the functions in Bioinformatics Toolbox for analyzing and visualizing gene
expression patterns.

Example: Visualizing
Microarray Data (p. 3-2)

Create figures to visualize microarray data
and get the data ready for analysis.

Example: Analyzing Gene
Expression Profiles (p. 3-25)

Analyze microarray data for patterns and
plot the results.

3 Microarray Analysis

Example: Visualizing Microarray Data
This example looks at the various ways to visualize microarray data. The
microarray data for this example is from Brown, V.M., Ossadtchi, A., Khan,
A.H., Yee, S., Lacan, G., Melega, W.P., Cherry, S.R., Leahy, R.M., and Smith,
D.J.; "Multiplex three dimensional brain gene expression mapping in a mouse
model of Parkinson’s disease"; Genome Research 12(6): 868-884 (2002).

Overview of the Mouse Example
(p. 3-2)

Pharmacological model of
Parkinson’s disease (PD) using
a mouse brain.

Exploring the Microarray Data Set
(p. 3-3)

Import data from the Web into
MATLAB.

Spatial Images of Microarray Data
(p. 3-5)

Visualize microarray data by
plotting image maps.

Statistics of the Microarrays (p. 3-15) Visualize distributions in microarray
data.

Scatter Plots of Microarray Data
(p. 3-16)

Visualize expression levels in
microarray data.

Overview of the Mouse Example
The microarray data used in this example is available in a web supplement
to the paper by Brown et al. and in the file mouse_a1pd.gpr included with
Bioinformatics Toolbox.

http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/

The microarray data is also available on the Gene Expression Omnibus Web
site at

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

The GenePix GPR formatted file mouse_a1pd.gpr contains the data for one of
the microarrays used in the study. This is data from voxel A1 of the brain of
a mouse in which a pharmacological model of Parkinson’s disease (PD) was
induced using methamphetamine. The voxel sample was labeled with Cy3
(green) and the control, RNA from a total (not voxelated) normal mouse brain,

3-2

http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

Example: Visualizing Microarray Data

was labeled with Cy5 (red). GPR formatted files provide a large amount of
information about the array, including the mean, median, and standard
deviation of the foreground and background intensities of each spot at the
635 nm wavelength (the red, Cy5 channel) and the 532 nm wavelength (the
green, Cy3 channel).

Exploring the Microarray Data Set
This procedure uses data from a study about gene expression in mouse brains
as an example. See “Overview of the Mouse Example” on page 3-2.

1 Read data from a file into a MATLAB structure. For example, in the
MATLAB Command Window, type

pd = gprread('mouse_a1pd.gpr')

MATLAB displays information about the structure:

pd =
Header: [1x1 struct]

Data: [9504x38 double]
Blocks: [9504x1 double]

Columns: [9504x1 double]
Rows: [9504x1 double]

Names: {9504x1 cell}
IDs: {9504x1 cell}

ColumnNames: {38x1 cell}
Indices: [132x72 double]

Shape: [1x1 struct]

2 Access the fields of a structure using StructureName.FieldName. For
example, you can access the field ColumnNames of the structure pd by typing

pd.ColumnNames

The column names are shown below.

ans =
'X'
'Y'
'Dia.'

3-3

3 Microarray Analysis

'F635 Median'
'F635 Mean'
'F635 SD'
'B635 Median'
'B635 Mean'
'B635 SD'
'% > B635+1SD'
'% > B635+2SD'
'F635 % Sat.'
'F532 Median'
'F532 Mean'
'F532 SD'
'B532 Median'
'B532 Mean'
'B532 SD'
'% > B532+1SD'
'% > B532+2SD'
'F532 % Sat.'
'Ratio of Medians'
'Ratio of Means'
'Median of Ratios'
'Mean of Ratios'
'Ratios SD'
'Rgn Ratio'
'Rgn R†'
'F Pixels'
'B Pixels'
'Sum of Medians'
'Sum of Means'
'Log Ratio'
'F635 Median - B635'
'F532 Median - B532'
'F635 Mean - B635'
'F532 Mean - B532'
'Flags'

3 Access the names of the genes. For example, to list the first 20 gene names,
type

pd.Names(1:20)

3-4

Example: Visualizing Microarray Data

A list of the first 20 gene names is displayed:

ans =
'AA467053'
'AA388323'
'AA387625'
'AA474342'
'Myo1b'
'AA473123'
'AA387579'
'AA387314'
'AA467571'

''
'Spop'
'AA547022'
'AI508784'
'AA413555'
'AA414733'

''
'Snta1'
'AI414419'
'W14393'
'W10596'

Spatial Images of Microarray Data
The function maimage can take a microarray data structure and create a
pseudocolor image of the data arranged in the same order as the spots on the
array. In other words, maimage plots a spatial plot of the microarray.

This procedure uses data from a study of gene expression in mouse brains.
For a list of field names in the MATLAB structure pd, see “Exploring the
Microarray Data Set” on page 3-3.

1 Plot the median values for the red channel. For example, to plot data from
the field F635 Median, type

figure
maimage(pd,'F635 Median')

3-5

3 Microarray Analysis

MATLAB plots an image showing the median pixel values for the
foreground of the red (Cy5) channel.

2 Plot the median values for the green channel. For example, to plot data
from the field F532 Median, type

figure
maimage(pd,'F532 Median')

3-6

Example: Visualizing Microarray Data

MATLAB plots an image showing the median pixel values of the foreground
of the green (Cy3) channel.

3 Plot the median values for the red background. The field B635 Median
shows the median values for the background of the red channel.

figure
maimage(pd,'B635 Median')

3-7

3 Microarray Analysis

MATLAB plots an image for the background of the red channel. Notice the
very high background levels down the right side of the array.

4 Plot the medial values for the green background. The field B532 Median
shows the median values for the background of the green channel.

figure
maimage(pd,'B532 Median')

3-8

Example: Visualizing Microarray Data

MATLAB plots an image for the background of the green channel.

5 The first array was for the Parkinson’s disease model mouse. Now read in
the data for the same brain voxel but for the untreated control mouse. In
this case, the voxel sample was labeled with Cy3 and the control, total
brain (not voxelated), was labeled with Cy5.

wt = gprread('mouse_a1wt.gpr')

MATLAB creates a structure and displays information about the structure.

3-9

3 Microarray Analysis

wt =
Header: [1x1 struct]

Data: [9504x38 double]
Blocks: [9504x1 double]

Columns: [9504x1 double]
Rows: [9504x1 double]

Names: {9504x1 cell}
IDs: {9504x1 cell}

ColumnNames: {38x1 cell}
Indices: [132x72 double]

Shape: [1x1 struct]

6 Use the function maimage to show pseudocolor images of the foreground
and background. You can use the function subplot to put all the plots
onto one figure.

figure
subplot(2,2,1);
maimage(wt,'F635 Median')
subplot(2,2,2);
maimage(wt,'F532 Median')
subplot(2,2,3);
maimage(wt,'B635 Median')
subplot(2,2,4);
maimage(wt,'B532 Median')

3-10

Example: Visualizing Microarray Data

MATLAB plots the images.

7 If you look at the scale for the background images, you will notice that the
background levels are much higher than those for the PD mouse and there
appears to be something nonrandom affecting the background of the Cy3
channel of this slide. Changing the colormap can sometimes provide more
insight into what is going on in pseudocolor plots. For more control over the
color, try the colormapeditor function.

colormap hot

3-11

3 Microarray Analysis

MATLAB plots the images.

8 The function maimage is a simple way to quickly create pseudocolor images
of microarray data. However if you want more control over plotting, it is
easy to create your own plots using the function imagesc.

First find the column number for the field of interest.

b532MedCol = find(strcmp(wt.ColumnNames,'B532 Median'))

MATLAB displays

b532MedCol =
16

9 Extract that column from the field Data.

b532Data = wt.Data(:,b532MedCol);

3-12

Example: Visualizing Microarray Data

10 Use the field Indices to index into the Data.

figure
subplot(1,2,1);
imagesc(b532Data(wt.Indices))
axis image
colorbar
title('B532 Median')

MATLAB plots the image.

3-13

3 Microarray Analysis

11 Bound the intensities of the background plot to give more contrast in the
image.

maskedData = b532Data;
maskedData(b532Data<500) = 500;
maskedData(b532Data>2000) = 2000;

subplot(1,2,2);
imagesc(maskedData(wt.Indices))
axis image
colorbar
title('Enhanced B532 Median')

MATLAB plots the images.

3-14

Example: Visualizing Microarray Data

Statistics of the Microarrays
You can use the function maboxplot to look at the distribution of data in
each of the blocks.

1 In the MATLAB Command Window, type

figure

subplot(2,1,1)

maboxplot(pd,'F532 Median','title','Parkinson''s Disease Model Mouse')

subplot(2,1,2)

maboxplot(pd,'B532 Median','title','Parkinson''s Disease Model Mouse')

figure

subplot(2,1,1)

maboxplot(wt,'F532 Median','title','Untreated Mouse')

subplot(2,1,2)

maboxplot(wt,'B532 Median','title','Untreated Mouse')

MATLAB plots the images.

3-15

3 Microarray Analysis

2 Compare the plots.

From the box plots you can clearly see the spatial effects in the background
intensities. Blocks numbers 1, 3, 5, and 7 are on the left side of the arrays,
and numbers 2, 4, 6, and 8 are on the right side. The data must be
normalized to remove this spatial bias.

Scatter Plots of Microarray Data
There are two columns in the microarray data structure labeled 'F635
Median - B635' and 'F532 Median - B532'. These columns are the
differences between the median foreground and the median background for
the 635 nm channel and 532 nm channel respectively. These give a measure of
the actual expression levels, although since the data must first be normalized
to remove spatial bias in the background, you should be careful about using
these values without further normalization. However, in this example no
normalization is performed.

3-16

Example: Visualizing Microarray Data

1 Rather than working with data in a larger structure, it is often easier to
extract the column numbers and data into separate variables.

cy5DataCol = find(strcmp(wt.ColumnNames,'F635 Median - B635'))
cy3DataCol = find(strcmp(wt.ColumnNames,'F532 Median - B532'))
cy5Data = pd.Data(:,cy5DataCol);
cy3Data = pd.Data(:,cy3DataCol);

MATLAB displays

cy5DataCol =
34

cy3DataCol =
35

2 A simple way to compare the two channels is with a loglog plot. The
function maloglog is used to do this. Points that are above the diagonal in
this plot correspond to genes that have higher expression levels in the A1
voxel than in the brain as a whole.

figure
maloglog(cy5Data,cy3Data)
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

MATLAB displays the following messages and plots the images.

Warning: Zero values are ignored
(Type "warning off Bioinfo:MaloglogZeroValues" to suppress
this warning.)

Warning: Negative values are ignored.
(Type "warning off Bioinfo:MaloglogNegativeValues" to suppress
this warning.)

3-17

3 Microarray Analysis

Notice that this function gives some warnings about negative and zero
elements. This is because some of the values in the 'F635 Median - B635'
and 'F532 Median - B532' columns are zero or even less than zero. Spots
where this happened might be bad spots or spots that failed to hybridize.
Points with positive, but very small, differences between foreground and
background should also be considered to be bad spots.

3 Disable the display of warnings by using the warning command. Although
warnings can be distracting, it is good practice to investigate why the
warnings occurred rather than simply to ignore them. There might be some
systematic reason why they are bad.

warnState = warning; % First save the current warning
state.

% Now turn off the two warnings.
warning('off','Bioinfo:MaloglogZeroValues');
warning('off','Bioinfo:MaloglogNegativeValues');

3-18

Example: Visualizing Microarray Data

figure
maloglog(cy5Data,cy3Data) % Create the loglog plot
warning(warnState); % Reset the warning state.
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

MATLAB plots the image.

4 An alternative to simply ignoring or disabling the warnings is to remove
the bad spots from the data set. You can do this by finding points where
either the red or green channel has values less than or equal to a threshold
value. For example, use a threshold value of 10.

threshold = 10;
badPoints = (cy5Data <= threshold) | (cy3Data <= threshold);

3-19

3 Microarray Analysis

MATLAB plots the image.

5 You can then remove these points and redraw the loglog plot.

cy5Data(badPoints) = []; cy3Data(badPoints) = [];
figure
maloglog(cy5Data,cy3Data)
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

3-20

Example: Visualizing Microarray Data

MATLAB plots the image.

This plot shows the distribution of points but does not give any indication
about which genes correspond to which points.

6 Add gene labels to the plot. Because some of the data points have
been removed, the corresponding gene IDs must also be removed from
the data set before you can use them. The simplest way to do that is
wt.IDs(~badPoints).

maloglog(cy5Data,cy3Data,'labels',wt.IDs(~badPoints),...
'factorlines',2)

xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

3-21

3 Microarray Analysis

MATLAB plots the image.

7 Try using the mouse to click some of the outlier points.

You will see the gene ID associated with the point. Most of the outliers are
below the y = x line. In fact, most of the points are below this line. Ideally
the points should be evenly distributed on either side of this line.

8 Normalize the points to evenly distribute them on either side of the line.
Use the function mameannorm to perform global mean normalization.

normcy5 = mameannorm(cy5Data);
normcy3 = mameannorm(cy3Data);

If you plot the normalized data you will see that the points are more evenly
distributed about the y = x line.

figure

3-22

Example: Visualizing Microarray Data

maloglog(normcy5,normcy3,'labels',wt.IDs(~badPoints),...
'factorlines',2)

xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

MATLAB plots the image.

9 The function mairplot is used to create an Intensity vs. Ratio plot for the
normalized data. This function works in the same way as the function
maloglog.

figure
mairplot(normcy5,normcy3,'labels',wt.IDs(~badPoints),...

'factorlines',2)

3-23

3 Microarray Analysis

MATLAB plots the image.

10 You can click the points in this plot to see the name of the gene associated
with the plot.

3-24

Example: Analyzing Gene Expression Profiles

Example: Analyzing Gene Expression Profiles
This example demonstrates a number of ways to look for patterns in gene
expression profiles.

Overview of the Yeast Example
(p. 3-25)

Gene expression of yeast with shift
from fermentation to respiration.

Exploring the Data Set (p. 3-25) Import data from the Web into
MATLAB.

Filtering Genes (p. 3-29) Remove genes that are not expressed
or do not change.

Clustering Genes (p. 3-32) Identify relationships between genes
using cluster techniques.

Principal Component Analysis
(p. 3-36)

Reduce the dimensionality of large
microarray data sets and look for
signals in noisy data.

Overview of the Yeast Example
The microarray data for this example is from DeRisi, JL, Iyer, VR, and Brown,
PO.; "Exploring the metabolic and genetic control of gene expression on a
genomic scale"; Science, 1997, Oct 24;278(5338):680-6, PMID: 9381177.

The authors used DNA microarrays to study temporal gene expression of
almost all genes in Saccharomyces cerevisiae during the metabolic shift from
fermentation to respiration. Expression levels were measured at seven time
points during the diauxic shift. The full data set can be downloaded from the
Gene Expression Omnibus Web site at

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28

Exploring the Data Set
The data for this procedure is available in the MAT-file yeastdata.mat.
This file contains the VALUE data or LOG_RAT2N_MEAN, or log2 of ratio
of CH2DN_MEAN and CH1DN_MEAN from the seven time steps in the
experiment, the names of the genes, and an array of the times at which the
expression levels were measured.

3-25

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28

3 Microarray Analysis

1 Load data into MATLAB.

load yeastdata.mat

2 Get the size of the data by typing

numel(genes)

MATLAB displays the number of genes in the data set. The MATLAB
variable genes is a cell array of the gene names.

ans =
6400

3 Access the entries using MATLAB cell array indexing.

genes{15}

MATLAB displays the 15th row of the variable yeastvalues, which
contains expression levels for the open reading frame (ORF) YAL054C.

ans =
YAL054C

4 Use the function web to access information about this ORF in the
Saccharomyces Genome Database (SGD).

url = sprintf(...
'http://genome-www4.stanford.edu/cgi-bin/SGD/...
locus.pl?locus=%s',...

genes{15});
web(url);

5 A simple plot can be used to show the expression profile for this ORF.

plot(times, yeastvalues(15,:))
xlabel('Time (Hours)');
ylabel('Log2 Relative Expression Level');

3-26

Example: Analyzing Gene Expression Profiles

MATLAB plots the figure. The values are log2 ratios.

6 Plot the actual values.

plot(times, 2.^yeastvalues(15,:))
xlabel('Time (Hours)');
ylabel('Relative Expression Level');

3-27

3 Microarray Analysis

MATLAB plots the figure. The gene associated with this ORF, ACS1,
appears to be strongly up-regulated during the diauxic shift.

7 Compare other genes by plotting multiple lines on the same figure.

hold on
plot(times, 2.^yeastvalues(16:26,:)')
xlabel('Time (Hours)');
ylabel('Relative Expression Level');
title('Profile Expression Levels');

3-28

Example: Analyzing Gene Expression Profiles

MATLAB plots the image.

Filtering Genes
The data set is quite large and a lot of the information corresponds to genes
that do not show any interesting changes during the experiment. To make
it easier to find the interesting genes, reduce the size of the data set by
removing genes with expression profiles that do not show anything of interest.
There are 6400 expression profiles. You can use a number of techniques to
reduce the number of expression profiles to some subset that contains the
most significant genes.

1 If you look through the gene list you will see several spots marked as
'EMPTY'. These are empty spots on the array, and while they might have
data associated with them, for the purposes of this example, you can
consider these points to be noise. These points can be found using the
strcmp function and removed from the data set with indexing commands..

3-29

3 Microarray Analysis

emptySpots = strcmp('EMPTY',genes);
yeastvalues(emptySpots,:) = [];
genes(emptySpots) = [];
numel(genes)

MATLAB displays

ans =
6314

In the yeastvalues data you will also see several places where the
expression level is marked as NaN. This indicates that no data was collected
for this spot at the particular time step. One approach to dealing with
these missing values would be to impute them using the mean or median of
data for the particular gene over time. This example uses a less rigorous
approach of simply throwing away the data for any genes where one or
more expression levels were not measured.

2 Use function isnan to identify the genes with missing data and then use
indexing commands to remove the genes.

nanIndices = any(isnan(yeastvalues),2);
yeastvalues(nanIndices,:) = [];
genes(nanIndices) = [];
numel(genes)

MATLAB displays

ans =
6276

If you were to plot the expression profiles of all the remaining profiles, you
would see that most profiles are flat and not significantly different from
the others. This flat data is obviously of use as it indicates that the genes
associated with these profiles are not significantly affected by the diauxic
shift. However, in this example, you are interested in the genes with large
changes in expression accompanying the diauxic shift. You can use filtering
functions in Bioinformatics Toolbox to remove genes with various types of
profiles that do not provide useful information about genes affected by
the metabolic change.

3-30

Example: Analyzing Gene Expression Profiles

3 Use the function genevarfilter to filter out genes with small variance
over time. The function returns a logical array of the same size as the
variable genes with ones corresponding to rows of yeastvalues with
variance greater than the 10th percentile and zeros corresponding to those
below the threshold.

mask = genevarfilter(yeastvalues);
% Use the mask as an index into the values to remove the
% filtered genes.
yeastvalues = yeastvalues(mask,:);
genes = genes(mask);
numel(genes)

MATLAB displays

ans =
5648

4 The function genelowvalfilter removes genes that have very low
absolute expression values. Note that the gene filter functions can also
automatically calculate the filtered data and names.

[mask, yeastvalues, genes] = genelowvalfilter(yeastvalues,genes,...
'absval',log2(4));

numel(genes)

MATLAB displays

ans =
423

5 Use the function geneentropyfilter to remove genes whose profiles have
low entropy:

[mask, yeastvalues, genes] = geneentropyfilter(yeastvalues,genes,...
'prctile',15);

numel(genes)

MATLAB displays

ans = 310

3-31

3 Microarray Analysis

Clustering Genes
Now that you have a manageable list of genes, you can look for relationships
between the profiles using some different clustering techniques from Statistics
Toolbox.

1 For hierarchical clustering, the function pdist calculates the pairwise
distances between profiles, and the function linkage creates the
hierarchical cluster tree.

corrDist = pdist(yeastvalues, 'corr');
clusterTree = linkage(corrDist, 'average');

2 The function cluster calculates the clusters based on either a cutoff
distance or a maximum number of clusters. In this case, the 'maxclust'
option is used to identify 16 distinct clusters.

clusters = cluster(clusterTree, 'maxclust', 16);

3 The profiles of the genes in these clusters can be plotted together using a
simple loop and the function subplot.

figure
for c = 1:16

subplot(4,4,c);
plot(times,yeastvalues((clusters == c),:)');
axis tight

end
suptitle('Hierarchical Clustering of Profiles');

MATLAB plots the images.

3-32

Example: Analyzing Gene Expression Profiles

4 Statistics Toolbox also has a K-means clustering function. Again, sixteen
clusters are found, but because the algorithm is different these are not
necessarily the same clusters as those found by hierarchical clustering.

[cidx, ctrs] = kmeans(yeastvalues, 16,...
'dist','corr',...
'rep',5,...
'disp','final');

figure
for c = 1:16

subplot(4,4,c);
plot(times,yeastvalues((cidx == c),:)');
axis tight

end
suptitle('K-Means Clustering of Profiles');

3-33

3 Microarray Analysis

MATLAB displays

13 iterations, total sum of distances = 11.4042
14 iterations, total sum of distances = 8.62674
26 iterations, total sum of distances = 8.86066
22 iterations, total sum of distances = 9.77676
26 iterations, total sum of distances = 9.01035

5 Instead of plotting all of the profiles, you can plot just the centroids.

figure
for c = 1:16

subplot(4,4,c);
plot(times,ctrs(c,:)');
axis tight
axis off % turn off the axis

end
suptitle('K-Means Clustering of Profiles');

3-34

Example: Analyzing Gene Expression Profiles

MATLAB plots the figure.

6 You can use the function clustergram to create a heat map and dendrogram
from the output of the hierarchical clustering.

figure
clustergram(yeastvalues(:,2:end),'RowLabels',genes,...

'ColumnLabels',times(2:end))

3-35

3 Microarray Analysis

MATLAB plots the figure.

Principal Component Analysis
Principal-component analysis (PCA) is a useful technique you can use to
reduce the dimensionality of large data sets, such as those from microarray
analysis. You can also use PCA to find signals in noisy data.

1 Use the princomp function in Statistics Toolbox to calculate the principal
components of a data set.

[pc, zscores, pcvars] = princomp(yeastvalues)

MATLAB displays

pc =

Columns 1 through 4

3-36

Example: Analyzing Gene Expression Profiles

-0.0245 -0.3033 -0.1710 -0.2831
0.0186 -0.5309 -0.3843 -0.5419
0.0713 -0.1970 0.2493 0.4042
0.2254 -0.2941 0.1667 0.1705
0.2950 -0.6422 0.1415 0.3358
0.6596 0.1788 0.5155 -0.5032
0.6490 0.2377 -0.6689 0.2601

Columns 5 through 7

-0.1155 0.4034 0.7887
-0.2384 -0.2903 -0.3679
-0.7452 -0.3657 0.2035
-0.2385 0.7520 -0.4283
0.5592 -0.2110 0.1032

-0.0194 -0.0961 0.0667
-0.0673 -0.0039 0.0521

2 You can use the function cumsum to see the cumulative sum of the variances.

cumsum(pcvars./sum(pcvars) * 100)

MATLAB displays

ans =
78.3719
89.2140
93.4357
96.0831
98.3283
99.3203

100.0000

This shows that almost 90% of the variance is accounted for by the first
two principal components.

3 A scatter plot of the scores of the first two principal components shows that
there are two distinct regions. This is not unexpected, because the filtering

3-37

3 Microarray Analysis

process removed many of the genes with low variance or low information.
These genes would have appeared in the middle of the scatter plot.

figure
scatter(zscores(:,1),zscores(:,2));
xlabel('First Principal Component');
ylabel('Second Principal Component');
title('Principal Component Scatter Plot');

MATLAB plots the figure.

4 The gname function from Statistics Toolbox can be used to identify genes on
a scatter plot. You can select as many points as you like on the scatter plot.

gname(genes);

When you have finished selecting points, press Enter.

5 An alternative way to create a scatter plot is with the function gscatter
from the Statistics Toolbox. gscatter creates a grouped scatter plot where
points from each group have a different color or marker. You can use
clusterdata, or any other clustering function, to group the points.

3-38

Example: Analyzing Gene Expression Profiles

figure
pcclusters = clusterdata(zscores(:,1:2),6);
gscatter(zscores(:,1),zscores(:,2),pcclusters)
xlabel('First Principal Component');
ylabel('Second Principal Component');
title('Principal Component Scatter Plot with Colored Clusters');
gname(genes) % Press enter when you finish selecting genes.

MATLAB plots the figure.

3-39

3 Microarray Analysis

3-40

4

Phylogenetic Analysis

Phylogenetic analysis is the process you use to determine the evolutionary
relationships between organisms. The results of an analysis can be drawn
in a hierarchical diagram called a cladogram or phylogram (phylogenetic
tree). The branches in a tree are based on the hypothesized evolutionary
relationships (phylogeny) between organisms. Each member in a branch, also
known as a monophyletic group, is assumed to be descended from a common
ancestor. Originally, phylogenetic trees were created using morphology, but
now, determining evolutionary relationships includes matching patterns in
nucleic acid and protein sequences.

Example: Building a Phylogenetic
Tree (p. 4-2)

Using data from mitochondrial
D-loop sequences, create a
phylogenetic tree for a family
of primates.

Phylogenetic Tree Tool Reference
(p. 4-14)

Description of menu commands and
features for creating publishable
tree figures.

4 Phylogenetic Analysis

Example: Building a Phylogenetic Tree
In this example, a phylogenetic tree is constructed from mitochondrial DNA
(mtDNA) sequences for the family Hominidae. This family includes gorillas,
chimpanzees, orangutans, and humans.

The following procedures demonstrate the phylogenetic analysis features
in Bioinformatics Toolbox. They are not intended to teach the process of
phylogenetic analysis, but to show you how to use MathWorks products to
create a phylogenetic tree from a set of nonaligned nucleotide sequences.

• “Overview for the Primate Example” on page 4-2 — Describes the biological
background for this example.

• “Creating a Phylogenetic Tree for Five Species” on page 4-6 — Use the
Jukes-Cantor method to calculate distances between sequences, and the
Unweighted Pair Group Method Average (UPGMA) method for linking
the tree nodes.

• “Creating a Phylogenetic Tree for Twelve Species” on page 4-8 — Add
additional organisms to confirm the observed monophyletic groups.

• “Exploring the Phylogenetic Tree” on page 4-10 — Use the MATLAB
command-line interface to programmatically determine characteristics in
a phylogenetic tree.

For information on how to create a phylogenetic tree with multiply aligned
sequences, see the function phytree.

Overview for the Primate Example
The origin of modern humans is a heavily debated issue that scientists have
recently tackled by using mitochondrial DNA (mtDNA) sequences. One
hypothesis explains the limited genetic variation of human mtDNA in terms
of a recent common genetic ancestry, implying that all modern population
mtDNA originated from a single woman who lived in Africa less than 200,000
years ago.

4-2

Example: Building a Phylogenetic Tree

Why Use Mitochondrial DNA Sequences for Phylogenetic
Study?
Mitochondrial DNA sequences, like the Y chromosome, do not recombine
and are inherited from the maternal parent. This lack of recombination
allows sequences to be traced through one genetic line and all polymorphisms
assumed to be caused by mutations.

Mitochondrial DNA in mammals has a faster mutation rate than nuclear
DNA sequences. This faster rate of mutation produces more variance between
sequences and is an advantage when studying closely related species. The
mitochondrial control region (Displacement or D-loop) is one of the fastest
mutating sequence regions in animal DNA.

Neanderthal DNA
The ability to isolate mitochondrial DNA (mtDNA) from palaeontological
samples has allowed genetic comparisons between extinct species and closely
related nonextinct species. The reasons for isolating mtDNA instead of
nuclear DNA in fossil samples have to do with the fact that

• mtDNA, because it is circular, is more stable and degrades slower then
nuclear DNA.

• Each cell can contain a thousand copies of mtDNA and only a single copy
of nuclear DNA.

While there is still controversy as to whether Neanderthals are direct
ancestors of humans or evolved independently, the use of ancient genetic
sequences in phylogenetic analysis adds an interesting dimension to the
question of human ancestry.

References
Ovchinnikov I., et al. (2000). Molecular analysis of Neanderthal DNA from
the northern Caucasus. Nature 404(6777), 490–493.

Sajantila A., et al. (1995). Genes and languages in Europe: an analysis of
mitochondrial lineages. Genome Research 5 (1), 42–52.

Krings M., et al. (1997). Neanderthal DNA sequences and the origin of
modern humans. Cell 90 (1), 19–30.

4-3

4 Phylogenetic Analysis

Jensen-Seaman, M., Kidd K. (2001). Mitochondrial DNA variation and
biogeography of eastern gorillas. Molecular Ecology 10(9), 2241–2247.

Searching NCBI for Phylogenetic Data
The NCBI taxonomy Web site includes phylogenetic and taxonomic
information from many sources. These sources include the published
literature, Web databases, and taxonomy experts. And while the NCBI
taxonomy database is not a phylogenetic or taxonomic authority, it can be
useful as a gateway to the NCBI biological sequence databases.

This procedure uses the family Hominidae (orangutans, chimpanzees, gorillas,
and humans) as a taxonomy example for searching the NCBI Web site and
locating mitochondrial D-loop sequences.

1 Use the MATLAB Help browser to search for data on the Web. In the
MATLAB Command Window, type

web('http://www.ncbi.nlm.nih.gov')

A separate browser window opens with the home page for the NCBI Web
site.

2 Search the NCBI Web site for information. For example, to search for the
human taxonomy, from the Search list, select Taxonomy, and in the for
box, enter hominidae.

The NCBI Web search returns a list of links to relevant pages.

4-4

Example: Building a Phylogenetic Tree

3 Select the taxonomy link for the family Hominidae. A page with the
taxonomy for the family is shown.

4-5

4 Phylogenetic Analysis

Creating a Phylogenetic Tree for Five Species
Drawing a phylogenetic tree using sequence data is helpful when you are
trying to visualize the evolutionary relationships between species. The
sequences can be multiply aligned or a set of nonaligned sequences, you can
select a method for calculating pair-wise distances between sequences, and
you can select a method for calculating the hierarchical clustering distances
used to build a tree.

4-6

Example: Building a Phylogenetic Tree

After locating the GenBank accession codes for the sequences you are
interested in studying, you can create a phylogenetic tree with the data. For
information on locating accession codes, see “Searching NCBI for Phylogenetic
Data” on page 4-4.

1 Create a MATLAB structure with information about the sequences. This
step uses the accession codes for the mitochondrial D-loop sequences
isolated from different hominid species.

data = {'German_Neanderthal' 'AF011222';
'Russian_Neanderthal' 'AF254446';
'European_Human' 'X90314' ;
'Mountain_Gorilla_Rwanda' 'AF089820';
'Chimp_Troglodytes' 'AF176766';

};

2 Get sequence data from the GenBank database and copy into MATLAB.

for ind = 1:5
seqs(ind).Header = data{ind,1};
seqs(ind).Sequence = getgenbank(data{ind,2},...

'sequenceonly', true);
end

3 Calculate pair-wise distances and create a phytree object. For example,
compute the pair-wise distances using the Jukes-Cantor distance method
and build a phylogenetic tree using the UPGMA linkage method. Since
the sequences are not prealigned, seqpdist pair-wise aligns them before
computing the distances.

distances = seqpdist(seqs,'Method','Jukes-Cantor','Alphabet','DNA');
tree = seqlinkage(distances,'UPGMA',seqs)

MATLAB displays information about the phytree object. The function
seqpdist calculates the pair-wise distances between pairs of sequences
while the function seqlinkage uses the distances to build a hierarchical
cluster tree. First, the most similar sequences are grouped together, and
then sequences are added to the tree in decending order of similarity.

Phylogenetic tree object with 5 leaves (4 branches)

4-7

4 Phylogenetic Analysis

4 Draw a phylogenetic tree.

h = plot(tree,'orient','bottom');
ylabel('Evolutionary distance')
set(h.terminalNodeLabels,'Rotation',-45)

MATLAB draws a phylogenetic tree in a figure window. In the figure below,
the hypothesized evolutionary relationships between the species is shown
by the location of species on the branches. The horizontal distances do
not have any biological significance.

Creating a Phylogenetic Tree for Twelve Species
Plotting a simple phylogenetic tree for five species seems to indicate a number
of monophyletic groups (see “Creating a Phylogenetic Tree for Five Species”
on page 4-6). After a preliminary analysis with five species, you can add more
species to your phylogenetic tree. Adding more species to the data set will
help you to confirm the groups are valid.

4-8

Example: Building a Phylogenetic Tree

1 Add more sequences to a MATLAB structure. For example, add mtDNA
D-loop sequences for other hominid species.

data2 = {'Puti_Orangutan' 'AF451972';
'Jari_Orangutan' 'AF451964';
'Western_Lowland_Gorilla' 'AY079510';
'Eastern_Lowland_Gorilla' 'AF050738';
'Chimp_Schweinfurthii' 'AF176722';
'Chimp_Vellerosus' 'AF315498';
'Chimp_Verus' 'AF176731';

};

2 Get additional sequence data from the GenBank database, and copy the
data into the next indices of a MATALB structure.

for ind = 1:7
seqs(ind+5).Header = data2{ind,1};
seqs(ind+5).Sequence = getgenbank(data2{ind,2},...

'sequenceonly', true);
end

3 Calculate pair-wise distances and the hierarchical linkage.

distances = seqpdist(seqs,'Method','Jukes-Cantor','Alpha','DNA');
tree = seqlinkage(distances,'UPGMA',seqs);

4 Draw a phylogenetic tree.

h = plot(tree,'orient','bottom');
ylabel('Evolutionary distance')
set(h.terminalNodeLabels,'Rotation',-45)

MATLAB draws a phylogenetic tree in a figure window. You can see four
main clades for humans, gorillas, chimpanzee, and orangutans.

4-9

4 Phylogenetic Analysis

Exploring the Phylogenetic Tree
After you create a phylogenetic tree, you can explore the tree using the
MATLAB command line or the phytreetool GUI. This procedure uses the
tree created in “Creating a Phylogenetic Tree for Twelve Species” on page
4-8 as an example.

1 List the members of a tree.

names = get(tree,'LeafNames')

From the list, you can determine the indices for its members. For example,
the European Human leaf is the third entry.

names =

'German_Neanderthal'
'Russian_Neanderthal'
'European_Human'

4-10

Example: Building a Phylogenetic Tree

'Chimp_Troglodytes'
'Chimp_Schweinfurthii'
'Chimp_Verus'
'Chimp_Vellerosus'
'Puti_Orangutan'
'Jari_Orangutan'
'Mountain_Gorilla_Rwanda'
'Eastern_Lowland_Gorilla'
'Western_Lowland_Gorilla'

2 Find the closest species to a selected species in a tree. For example, find the
species closest to the European human.

[h_all,h_leaves] = select(tree,'reference',3,...
'criteria','distance',...
'threshold',0.6);

h_all is a list of indices for the nodes within a patristic distance of 0.6 to
the European human leaf, while h_leaves is a list of indices for only the
leaf nodes within the same patristic distance.

A patristic distance is the path length between species calculated from
the hierarchical clustering distances. The path distance is not necessarily
the biological distance.

3 List the names of the closest species.

subtree_names = names(h_leaves)

MATLAB prints a list of species with a patristic distance to the European
human less than the specified distance. In this case, the patristic distance
threshold is less than 0.6.

subtree_names =

'German_Neanderthal'
'Russian_Neanderthal'
'European_Human'
'Chimp_Schweinfurthii'
'Chimp_Verus'
'Chimp_Troglodytes'

4-11

4 Phylogenetic Analysis

4 Extract a subtree from the whole tree by removing unwanted leaves. For
example, prune the tree to species within 0.6 of the European human
species.

leaves_to_prune = ~h_leaves;
pruned_tree = prune(tree,leaves_to_prune)
h = plot(pruned_tree,'orient','bottom');
ylabel('Evolutionary distance')
set(h.terminalNodeLabels,'Rotation',-30)

MATLAB returns information about the new subtree and plots the pruned
phylogenetic tree in a figure window.

Phylogenetic tree object with 6 leaves (5 branches)

5 Explore, edit, and format a phylogenetic tree using an interactive GUI.

phytreetool(pruned_tree)

MATLAB opens the Phylogenetic Tree Tool window and draws the tree.

4-12

Example: Building a Phylogenetic Tree

You can interactively change the appearance of the tree within the tool
window. For information on using this GUI, see “Phylogenetic Tree Tool
Reference” on page 4-14.

4-13

4 Phylogenetic Analysis

Phylogenetic Tree Tool Reference
The Phylogenetic Tree Tool is an interactive graphical user interface (GUI)
that allows you to view, edit, format, and explore phylogenetic tree data. With
this GUI you can prune, reorder, rename branches, and explore distances. You
can also open or save Newick formatted files.

• “Opening the Phylogenetic Tree Tool” on page 4-14 — Draw a phylogenetic
tree from data in a phytree object or a previously saved file.

• “File Menu” on page 4-16 — Open tree data from a Newick formatted
file, copy data to a MATLAB figure window, another tool window, or the
MATLAB workspace, and save tree data.

• “Tools Menu” on page 4-25 — Explore branch paths, rename and edit branch
and leaf names, hide selected branches and leaves, and rotate branches.

• “Windows Menu” on page 4-34 — Switch to any open window.

• “Help Menu” on page 4-34 — Select quick links to the Bioinformatics
Toolbox documentation for phylogenetic analysis functions, tutorials, and
the phytreetool reference.

Opening the Phylogenetic Tree Tool
The Phylogenetic Tree Tool can read data from Newick and ClustalW tree
formatted files.

This procedure uses the phylogenetic tree data stored in the file pf00002.tree
as an example. The data was retrieved from the protein family (PFAM) Web
database and saved to a file using the accession number PF00002 and the
function gethmmtree.

1 Create a phytree object. For example, to create a phytree object from tree
data in the file pf00002.tree, type

tr= phytreeread('pf00002.tree')

MATLAB creates a phytree object.

Phylogenetic tree object with 37 leaves (36 branches)

2 Open the Phylogenetic Tree Tool and draw a phylogenetic tree.

4-14

Phylogenetic Tree Tool Reference

phytreetool(tr)

The Phylogenetic Tree Tool window opens.

Alternately, if you do not give the phytreetool function an argument, the
Select Phylogenetic Tree dialog box opens. Select a Newick formatted file
and then click Open.

3 Select a command from the menu or toolbar.

4-15

4 Phylogenetic Analysis

File Menu
The File menu includes the standard commands for opening and closing a
file, and it includes commands to use phytree object data from the MATLAB
workspace. The File menu commands are shown below.

New Tool Command
Use the New Tool command to open tree data from a file into a second
Phylogenetic Tree Tool window.

1 From the File menu, select New Tool.

The Open A Phylogenetic Tree dialog box opens.

4-16

Phylogenetic Tree Tool Reference

2 Choose the source for a tree.

• MATLAB Workspace — Select the Import from workspace options,
and then select a phytree object from the list.

• File — Select the Open phylogenetic tree file option, click the
Browse button, select a directory, select a file with the extension .tree,
and then click Open. Bioinformatics Toolbox uses the file extension
.tree for Newick formatted files, but you can use any Newick formatted
file with any extension.

4-17

4 Phylogenetic Analysis

MATLAB opens a second Phylogenetic Tree Tool window with tree data
from the selected file.

Open Command
Use the Open command to read tree data from a Newick formatted file and
display that data in a Phylogenetic Tree Tool.

1 From the File menu, click Open.

The Select Phylogenetic Tree File dialog box opens.

2 Select a directory, select a Newick formatted file, and then click Open.
Bioinformatics Toolbox uses the file extension .tree for Newick formatted
files, but you can use any Newick formatted file with any extension.

MATLAB replaces the current tree data with data from the selected file.

Import from Workspace Command
Use the Import from Workspace command to read tree data from a phytree
object in the MATLAB workspace and display that data in a Phylogenetic
Tree Tool.

4-18

Phylogenetic Tree Tool Reference

1 From the File menu, click Import from Workspace.

The Get Phytree Object dialog box opens.

2 From the list, select a phytree object in the MATLAB workspace.

3 Click the Import button.

MATLAB replaces the current tree data in the Phylogenetic Tree Tool with
data from the selected object.

Open Original in New Tool
There may be times when you make changes that you would like to undo.
Phytreetool does not have an undo command, but you can get back to the
original tree you started viewing with the Open Original in New Tool
command.

From the File menu, click Open Original in New Tool.

A new Phylogenetic Tree Tool window opens with the original tree.

Save As Command
After you create a phytree object or prune a tree from existing data, you can
save the resulting tree in a Newick formatted file. The sequence data used to
create the phytree object is not saved with the tree.

4-19

4 Phylogenetic Analysis

1 From the File menu, click Save As.

The Save Phylogenetic tree as dialog box opens.

2 In the Filename box, enter the name of a file. Bioinformatics Toolbox
uses the file extension .tree for Newick formatted files, but you can use
any file extension.

3 Click Save.

phytreetool saves tree data without the deleted branches, and it saves
changes to branch and leaf names. Formatting changes such as branch
rotations, collapsed branches, and zoom settings are not saved in the file.

Export to New Tool Command
Because some of the Phylogenetic Tree Tool commands cannot be undone (for
example, the Prune command), you might want to make a copy of your tree
before trying a command. At other times, you might want to compare two
views of the same tree, and copying a tree to a new tool window allows you to
make changes to both tree views independently .

1 From the File menu, point to the Export to New Tool submenu, and then
click either With Hidden Nodes or Only Displayed.

A new Phylogenetic Tree Tool window opens with a copy of the tree.

2 Use the new figure to continue your analysis.

Export to Workspace Command
The Phylogenetic Tree Tool can open Newick formatted files with tree data.
However, it does not create a phytree object in the MATLAB workspace. If
you want to programmatically explore phylogenetic trees, you need to use
the Export to Workspace command.

1 From the File menu, point to Export to Workspace, and then click either
With Hidden Nodes or Only Displayed.

The Export to Workspace dialog box opens.

4-20

Phylogenetic Tree Tool Reference

2 In the MATLAB variable name box, enter the name for your phylogenetic
tree data. For example, enter MyTree.

3 Click OK.

The phytreetool creates a phytree object in the MATLAB Workspace.

Print to Figure Command
After you have explored the relationships between branches and leaves in
your tree, you can copy the tree to a MATLAB figure window. Using a figure
window allows you to use all the MATLAB features for annotating, changing
font characteristics, and getting your figure ready for publication. Also, from
the figure window, you can save an image of the tree as it was displayed in
the Phylogenetic Tree Tool window.

1 From the File menu, point to Print to Figure, and then click either With
Hidden Nodes or Only Displayed.

The Publish Phylogenetic Tree to Figure dialog box opens.

4-21

4 Phylogenetic Analysis

2 Select one of the Rendering Types, and then select the Display Labels you
want on your figure.

• Square (square branches)

• Angular (angular branches)

• Radial

3 Select the Display Labels you want on your figure. You can select from all
to none of the options.

• Branch Nodes — Display branch node names on the figure.

• Leaf Nodes — Display leaf node names on the figure.

• Terminal Nodes — Display terminal node names on the right border.

4-22

Phylogenetic Tree Tool Reference

4 Click the Print button.

A new figure window opens with the characteristics you selected.

Page Setup Command
When you print from the Phylogenetic Tree Tool or a MATLAB figure window
(with a tree published from the tool), you can specify setup options for
printing a tree.

1 From the File menu, click Page Setup.

The Page Setup - Phylogenetic Tree Tool dialog box opens. This is the
same dialog box MATLAB uses to select page formatting options.

2 Select the page formatting options and values you want, and then click OK.

4-23

4 Phylogenetic Analysis

Print Setup Command
Use the Print Setup command with the Page Setup command to print a
MATLAB figure window.

1 From the File menu, click Print Setup.

The Print Setup dialog box opens.

2 Select the printer and options you want, and then click OK.

Print Preview Command
Use the Print Preview command to check the formatting options you
selected with the Page Setup commend.

1 From the File menu, click Print Preview.

A window opens with a picture of your figure with the selected formatting
options.

4-24

Phylogenetic Tree Tool Reference

2 Click Print or Close.

Print
Use the Print command to make a copy of your phylogenetic tree after you
use the Page Setup command to select formatting options.

1 From the File menu, click Print.

The Print dialog box opens.

2 From the Name list, select a printer, and then click OK.

Tools Menu
The Tools menu and toolbar are where you will find most of the commands
specific to trees and phylogenetic analysis. Use these commands and modes
to interactively edit and format your tree. The Tools menu commands are
shown below.

4-25

4 Phylogenetic Analysis

Inspect Mode Command
Use the inspect mode to compare path distances between sequences and to
search for related sequences that might not be physically drawn close together.

1 From the Tools menu, click Inspect, or from the toolbar, click the Inspect

Tool mode icon .

The Phylogenetic Tree Tool is set to inspect mode.

2 Point to a branch or leaf node.

A pop-up window opens with information about the patristic distances to
parent and root nodes.

3 Click a branch or leaf node, and then move your mouse over another leaf
node.

The tool highlights the path between nodes and displays the path length in
the pop-up window. The path length is the patristic distances calculated
by seqlinkage.

Collapse/Expand Branch Mode Command
Some trees can have thousands of leaf and branch nodes. Displaying all the
nodes can create a tree diagram that is unreadable. By collapsing some of the
branches, you can better see the relationships between the remaining nodes.

4-26

Phylogenetic Tree Tool Reference

1 From the Tools menu, click Collapse/Expand, or from the toolbar, click

the Collapse/Expand node icon .

The Phylogenetic Tree Tool is set to collapse/expand mode.

2 Point to a branch.

The selected paths to collapse (remove from view) are highlighted in gray.

3 Click the branch node.

The tool removes the display of branch and leaf nodes below the selected
branch. The data is not removed.

4 To expand a branch, point to a collapsed branch and click.

Rotate Branch Mode Command
A phylogenetic tree is initially created by pairing the two most similar
sequences and then adding the remaining sequences in a decreasing order
of similarity. You might want to rotate branches to emphasize the direction
of evolution.

1 From the Tools menu, click Rotate Branch, or from the toolbar, click

the Rotate Branch mode icon .

The Phylogenetic Tree Tool is set to rotate branch mode.

4-27

4 Phylogenetic Analysis

2 Point to a branch node.

3 Click the branch node.

The branch and leaf nodes are rotated 180 degrees around the selected
branch node.

Rename Leaf/Branch Mode Command
The Phylogenetic Tree Tool takes the node names from the phytree object
and creates numbered branch names starting with Branch 1. You can edit
and change or replace any of the leaf or branch names. Changes to branch
and leaf names are saved when you use the Save command.

1 From the Tools menu, click Rename, or from the toolbar, click the Rename

mode icon .

2 Click a branch or leaf node.

A text box opens with the current name of the node.

3 In the text box, edit or enter an new name.

4-28

Phylogenetic Tree Tool Reference

4 To save your changes, click outside of text box.

Prune (delete) Leaf/Branch Mode Command
Your tree might contain leaves that are far outside the phylogeny, or it might
have duplicate leaves that you want to remove.

1 From the Tools menu, click Prune, or from the toolbar, click the prune

icon .

The Phylogenetic Tree Tool is set to rename mode.

2 Point to a branch or leaf node.

For leaf node, the branch line connected to the leaf is highlighted in gray.
For a branch nodes, the branch lines below the node are highlighted in
light gray.

Note If you delete nodes (branches or leaves), you cannot undo the
changes. The Phylogenetic Tree Tool does not have an Undo command.

3 Click the branch or leaf node.

4-29

4 Phylogenetic Analysis

The branch is removed from the figure and the other nodes are rearranged
to balance the tree structure. The phylogeny is not recalculated.

Zoom In, Zoom Out, and Pan Commands
The Zoom and Pan commands are the standard controls with MATLAB
figures for resizing and moving the screen.

1 From the Tools menu, click Zoom In, or from the toolbar click the zoom

in icon .

The tool activates zoom n mode and changes the cursor to a magnifying
glass.

2 Place the cursor over the section of the tree diagram you want to enlarge
and then click.

The tree diagram is enlarged to twice its size.

3 From the toolbar click the Pan icon .

4 Move the cursor over the tree diagram, left-click, and drag the diagram to
the location you want to view.

4-30

Phylogenetic Tree Tool Reference

Zoom In , Zoom Out , Pan

Threshold Collapse Command
Use the Threshold Collapse command to collapse the display of nodes
using a distance criterion instead of interactively selecting nodes with the
Collapse/Expand command. Branches with distances below the threshold
are collapsed from the display.

1 From the Tools menu, click Threshold Collapse, and select one of the
following:

• Distance to Leaves — Sets the threshold starting from the right of
the tree.

• Distance to Root — Sets the threshold starting from the root node
at the left side of the tree.

The collapse slider bar is displayed at the top of the diagram.

2 Click and drag the slider bar to the left to set the distance threshold.

4-31

4 Phylogenetic Analysis

3 Click the OK button to the right of the slider. The nodes below the distance
threshold are hidden.

Expand All Command
The data for branches and leaves you hide with the Collapse/Expand or
Threshold Collapse commands are not removed from the tree. You can
display the hidden data using these commands or display all hidden data with
the Expand All command.

Select Tools > Expand All. The hidden branches and leaves are displayed.

Find Leaf/Branch Command
Phylogenetic trees can have thousands of leaves and branches, and finding a
specific node can be difficult. Use the Find command to locate a node using
its name or part of its name.

1 Select Tools > Find Leaf/Branch.

The Find Leaf/Branch dialog box opens.

4-32

Phylogenetic Tree Tool Reference

2 In the Regular Expression to match box, enter a name or partial name
of a branch or leaf.

3 Click OK.

Fit to Window
After you hide nodes with the Collapse/Expand or Threshold Collapse
commands, or delete nodes with the Prune command, there might be extra
space in the tree diagram. Use the Fit to Window command to redraw the
tree diagram to fill the entire figure window.

From the Tools menu, click Fit to Window.

Reset View Command
Use the Reset Window command to remove formatting changes such as
rotations, collapsed branches, and zooms.

From the Tools menu, click Reset Window.

Options Submenu
Use the Options command to select the behavior for the zoom and pan modes.

• Unconstrained Zoom — Allow zooming in both horizontal and vertical
directions.

• Horizontal Zoom — Restrict zoom to the horizontal direction.

• Vertical Zoom — Zoom only in the vertical direction (default).

4-33

4 Phylogenetic Analysis

• Unconstrained Pan — Allow panning in both horizontal and vertical
directions.

• Horizontal Pan — Restrict panning to horizontal direction.

• Vertical Pan — Pan only in the vertical direction (default).

Windows Menu
The Windows menu is standard on MATLAB GUI and figure windows. Use
this menu to select any opened window.

Help Menu
Use the Help menu to select quick links to the Bioinformatics Toolbox
documentation for phylogenetic analysis functions, tutorials, and the
phytreetool reference.

4-34

A

Examples

Use this list to find examples in the documentation.

A Examples

Sequence Analysis
“Example: Sequence Statistics” on page 2-2
“Example: Sequence Alignment” on page 2-18

Microarray Analysis
“Example: Visualizing Microarray Data” on page 3-2
“Example: Analyzing Gene Expression Profiles” on page 3-25

Phylogenetic Analysis
“Example: Building a Phylogenetic Tree” on page 4-2

A-2

Index

IndexA
amino acids

comparing sequences 2-28
composition 2-15

applications
deploying 1-18
prototyping 1-18

B
bioinformatics

application deployment 1-19
computation with MATLAB 1-2
data visualization 1-18
visualizing data 1-2

Bioinformatics Toolbox
additional software 1-5
expected user 1-4
installation 1-5
required software 1-5

C
clusters

gene expression data 3-32
codons

nucleotide composition 2-9
composition

amino acid 2-15
nucleotide 2-9

conversions
nucleotide to amino acid 2-15

D
data

filtering microarray data 3-29
getting into MATLAB 2-4
loading into MATLAB 3-25
microarray 3-3

data formats
supporting functions 1-8

data visualization
bioinformatics 1-18

databases
getting information from 2-20
related genes 2-23
supporting functions 1-8

E
examples

gene expression in mouse brain 3-2
gene expression in yeast metabolism 3-25
sequence alignment 2-18
sequence statistics 2-2

F
features

prototyping 1-18
functions

data formats 1-8
databases 1-8
graph theory 1-16
mass spectrometry analysis 1-13
microarray analysis 1-12
protein structure analysis 1-11
sequence alignment 1-9
sequence utilities 1-10
statistical learning 1-17

G
gene expression profile

mouse brain 3-2
yeast metabolism 3-25

genome data
with MATLAB structures 3-25

graph theory
supporting functions 1-16

Index-1

Index

graph visualization
supporting methods 1-17

I
installation

from DVD or Web 1-5

M
mass spectrometry analysis

supporting functions 1-13
MATLAB structures

with genome data 2-4
methods

graph visualization 1-17
microarray

clustering genes 3-32
filtering data 3-29
mouse brain example 3-1
principal component analysis 3-36
scatter plots 3-16
spacial images 3-5
statistics 3-15
visualizing data 3-2
working with data 3-3
yeast example 3-1

microarray analysis
supporting functions 1-12

model organism
finding 2-18

mouse brain
gene expression profile 3-2
microarray tutorial 3-2

multiple sequence alignment
aligning sequences 2-50
manual adjustment 2-51

Multiple Sequence Alignment Viewer
GUI 2-48

N
NCBI

searching Web site 2-18
nucleotides

composition in sequences 2-5
content in sequences 2-2
searching database 2-23

O
open reading frames

searching for 2-12

P
phylogenetic analysis

building tree 4-2
creating subtree 4-8
creating tree 4-6
exploring tree 4-10
GUI reference 4-14
reading data 2-48
searching NCBI 4-4
selecting subtree 2-49

plots
scatter 3-16

principal component analysis
filtering microarray data 3-36

protein properties
analysis functions 1-11

protein sequence
locating 2-25

prototyping
supporting features 1-18

S
sequence

amino acid conversion 2-15
codon composition 2-9

Index-2

Index

comparing amino acids 2-28
nucleotide content 2-2
protein coding 2-25
searching database 2-23
statistics example 2-2

sequence alignment
example 2-18
supporting functions 1-9

sequence analysis
defined 2-1
using seqtool GUI 2-37

sequence tool GUI
importing sequence 2-37
reading frames 2-42
searching words 2-41
statistics 2-45
viewing sequence 2-39

sequence utilities
supporting functions 1-10

sequences
nucleotide composition 2-5

share algorithms
bioinformatics 1-19

software
required 1-5

spatial images
microarray 3-5

statistical learning
supporting functions 1-17

statistics
microarray 3-15

structures
with genome data 3-25

V
visualizing data

microarray 3-2

Index-3

	toc
	Getting Started
	What Is Bioinformatics Toolbox?
	Expected User

	Installation
	Required Software
	Additional Software

	Features and Functions
	Data Formats and Databases
	Sequence Alignments
	Sequence Utilities and Statistics
	Protein Property Analysis
	Phylogenetic Analysis
	Microarray Data Analysis
	Mass Spectrometry Data Analysis
	Graph Theory Functions
	Graph Visualization
	Statistical Learning and Visualization
	Prototyping and Development Environment
	Data Visualization
	Algorithm Sharing and Application Deployment

	Sequence Analysis
	Example: Sequence Statistics
	Determining Nucleotide Content
	Getting Sequence Information into MATLAB
	Determining Nucleotide Composition
	Determining Codon Composition
	Open Reading Frames
	Amino Acid Conversion and Composition

	Example: Sequence Alignment
	Finding a Model Organism to Study
	Getting Sequence Information from a Public Database
	Searching a Public Database for Related Genes
	Locating Protein Coding Sequences
	Comparing Amino Acid Sequences

	Sequence Tool
	Importing a Sequence
	Viewing Nucleotide Sequence Information
	Searching for Words
	Exploring Open Reading Frames
	Viewing Amino Acid Sequence Statistics

	Multiple Sequence Alignment Viewer
	Loading Sequence Data and Viewing the Phylogenetic Tree
	Selecting a Subset of Data from the Phylogenetic Tree
	Aligning Multiple Sequences
	Adjusting Multiple Alignments Manually

	Microarray Analysis
	Example: Visualizing Microarray Data
	Overview of the Mouse Example
	Exploring the Microarray Data Set
	Spatial Images of Microarray Data
	Statistics of the Microarrays
	Scatter Plots of Microarray Data

	Example: Analyzing Gene Expression Profiles
	Overview of the Yeast Example
	Exploring the Data Set
	Filtering Genes
	Clustering Genes
	Principal Component Analysis

	Phylogenetic Analysis
	Example: Building a Phylogenetic Tree
	Overview for the Primate Example
	Why Use Mitochondrial DNA Sequences for Phylogenetic Study?
	Neanderthal DNA
	References

	Searching NCBI for Phylogenetic Data
	Creating a Phylogenetic Tree for Five Species
	Creating a Phylogenetic Tree for Twelve Species
	Exploring the Phylogenetic Tree

	Phylogenetic Tree Tool Reference
	Opening the Phylogenetic Tree Tool
	File Menu
	New Tool Command
	Open Command
	Import from Workspace Command
	Open Original in New Tool
	Save As Command
	Export to New Tool Command
	Export to Workspace Command
	Print to Figure Command
	Page Setup Command
	Print Setup Command
	Print Preview Command
	Print

	Tools Menu
	Inspect Mode Command
	Collapse/Expand Branch Mode Command
	Rotate Branch Mode Command
	Rename Leaf/Branch Mode Command
	Prune (delete) Leaf/Branch Mode Command
	Zoom In, Zoom Out, and Pan Commands
	Threshold Collapse Command
	Expand All Command
	Find Leaf/Branch Command
	Fit to Window
	Reset View Command
	Options Submenu

	Windows Menu
	Help Menu

	Examples
	Sequence Analysis
	Microarray Analysis
	Phylogenetic Analysis

	Index

